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FOREWORD

)The Twenty-Eighth Conference of Army Mathematicians, like all the others in
this series, had many papers on the applications of mathematics. In most
cases these applications were to problems that arose in Army laboratories.
Since one mathematical idea can apply to many different disciplines, the
successful treatment of a problem at one installation often enables a
scientist at another installation to handle an entirely different assignment.
This all helps to shorten the time between the creation of new ideas and their
applications. Today, with the increasing momentum of scientific activity, the
seed of anh increased This is in contrast with the following
nown case. The time between the mathematical presentation of all the

properties of conics, by the Greek geometer Appollonius, and their application
to the orbits of the planets, by the German mathematical physicist Johannes
Kepler, was 1800 years.

The host of this conference was the U. S. Army Research Office (ARO) and it
was held on 28-30 June 1982 at the Uniformed Services University of Health
Sciences in Bethesda, Maryland. The Army Mathematics Steering Committee
(AMSC), sponsor of these Army-wide conferences, would like to thank this
university for the use of its excellent facilities. Members of the AMSC would
also like to thank Mr. Wendell Young of the Uniformed Services University for
making several rooms available for the conductions of this meeting and for the
many other services he performed in our behalf.

The theme of -the 20th Conference was Mathematical Problems in Diffusion,
Transport and Mixing'. Special emphasis was given to problems of viscoelastic
Fluids, stability and fluid mixing in containers and propagation in complex
media. A list of the invited speakers along with the titles of their
addresses -a, ur Ur bft aw, These qentlemen as well as authors of several of
the solicited papers stresseithe ideas expressed in the theme of the
meeting. S o ' Ti l

Speakers and Affiliation Title

Professor George Papanicolaou L-CONVECTION OF MICROSTRUCTURE;
Courant Institute of Mathematical "
Sciences /

Professor James Brock AEROSOL DYNAMICS'
University of Texas at Austin

Professor S. H. Davis CSPREADING OF LIQUID FILMS:
Northwestern University BIFURCATION AND STABILITY STUDIES,

Professor D. D. Joseph RHEOLOGY OF VISCOELASTIC FLUIDS-,.A
University of Minnesota

Professor Lee Segel ANALYSIS OF NEUROTRANSMITTER
Weizmann Institute and RELEASE
Rensselaer Polytechnic Institute
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Members of the AMSC would like to take this opportunity to thank the speakers
and all the other individuals who contributed to the success of this meeting.
They have requested that these proceedings be issued to enable those
scientists that could not attend, as well as those present, to have a summary
of the conference. They would also like to thank Mrs. Sherry Duke of the Army
Research Office for her excellent secretarial work in connection with this and
the other two Army-wide conferences. Attendees appreciated all the help she
gave them during the course of this meeting.
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Non linear evolution of data with

0microstructure and applications

GC. Papanicolaou

Courant Institute, New York University

0The well known calculation of the Reynolds stress tensor

that can be found for example in [1] goes as follows.

Write the velocity field u(t,x) in the form

u = u + u' = mean + fluctuating field

where the mean of u', ui is zero and insert this expression

into the Navier-Stokes equations

ut + u-Vu + Vp = vAu , V-u = 0

Taking averages yields the equation

ut + u-Vu + Vp = vAu + V.T , V-u = 0

where

T = -u' X u,

is the average of the tensor product of the fluctuating part

of the velocity field. The tensor T is called the Reynolds

stress tensor. Of course the equation for u is not closed

since it involves the unknown tensor T. One can obtain

an equation for T in the usual manner which it in turn is

not closed because it involves products of three velocities

II



and so on. One has the usual closure problem of turbulence.

Very early on, and with substantial effectiveness,

it was suggested that T be replaced by a known quantity

of the form

() i T (ui,j + u.

where the coefficient vT is called th'e eddy or turbulent

viscosity coefficient.*

The question arises: to what extent is this simple

closure hypothesis (1) valid if at all, and how can vT be

characterized in terms of more basic properties of the

turbulent velocity field? This io at present very much an

open question and will probably remain so for some time

because the mathematical understanding of the Navier-Stokes

equations is very incomplete.

Perhaps hypothesis (1) is not bad and may even be

useful in many calculations. Unfortunately what one finds

in experiments is that when (1) is used to calculate the

drag on a body moving through a turbulent flow the coefficient

VT depends on the macroscopic geometry of the body. It is

not a constant reflecting properties of the microstructure of

the flow as one would expect.

Along another direction Saffman [3] approached the

For a recent review of such ideas see [2].

2
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problem of calculating interesting flow quantities in

turbulent fluids by writing down a phenomenological system

of equations for several quantities that are not related

directly to averages of the microscopic flow. Further

applications are given by D. Knight [41 and one can see

that in these works also the constants that enter into

the equations have to be adjusted from problem to problem

-- a very unsatisfactory situation:

We have tried to understand this difficulty by

exploring a set of simpler problems as well as the

Navier-Stokes equations. A report is given in [5] where

a two-fluid approach is taken: we attempt to separate

the dependence of vT into parts that depend only on

the microstructure and parts that depend on the macroscopic

geometry.

We have also given an account of the connection of the

closure problem to homogenization and random media [6].

3
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INHOMOGENEOUS DIFFUSION (PARTICULARLY IN INHOMOGENEOUS POLYMER MEMBRANES OR SLABS)C
H. L. Frish

Department of ChemistryC State University of New York at Albany
C1400 Washington Avenue

Albany, N.Y. 12222

ABSTRACT. _Wreview briefly the inverse diffusion problem encountered in practice
Interpreting permeation and sorption measurements on inhomogeneous polymer membranes,
films or slabs. 1ke suggest some important open problems in this field.

There exists in many contexts interest in the diffusion of smaller molecules,

the penetrants, in polymer membranes or films.1  Polymer membranes or films are

often used as protective barriers against the penetrant or to separate penetrant

mixtures. These polymer membranes are often naturally inhomogeneous due to the

presence of crystalline regions in the amorphous polymer matrix or regions of

polymer - polymer phase separation if the film is made from a polyme- alloy

composite. Artificial inhomogeneities such as fillers and/or voids introduced

with them are sometimes added to polymers to enhance their barrier properties or

permselectivity. Lineal dimensions of these inhomogeneities are of the order of

0.01 - 100 m p and in first approximation can be thought to be remain fixed in

the sample without distortion in the course of the diffusion process. A schematic

diagram of such an inhomogeneous polymer is shown in Figure I below, with the

cross-hatched area indicating crystallinity, the stippled region polymer phase

separation and the dark particle a filler particle.

Figure I
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The concentration c(rt) of the isothermally diffusing penetrant at any point

r at time t is governed by the irreversible thermodynamic relationships:

a) The flux I(T,t) of the penetrant is given by

D V(Ap) c =-Ok V(c/k)()
R

where AV RT In (c/k) is the chemical potential difference of the penetrant,

c/k = a is the thermodynamic activity, T is the absolute temperature, R the gas

constant, D = D({,c) the diffusion coefficient, k( r,c) the partition co-

efficient (essentially the inverse activity coefficient) of the penetrant - polymer

system, and

b) the equation of continuity

ac = V (2)
t

Combining eq. (1) with (2) yields

ae = V .[Ok V (c/k)] (3)
t

which describes penetrant diffusion in such an inhomogeneous medium. Only in

the case of (homogeneous) ideal Fickean diffusion, when D = D., a constant and

k = ko, a constant does eq. (3) reduce to the usual form of Fick's Second

Law

ac = Dov 2 c  (4)

Besides suitable initial and boundary conditions (B.C.) eq. (3) can only lead to

a well posed mathematical boundary value problem if the material coefficients

describing the dispersal of the penetrant in the polymer, D(Tc) and ktr,c), are

known. Unfortunately, in practice, this is not the case and one has to deal with

an inverse diffusion problem, which is to extract some information about D and k

from standard permeation and sorption measurements. These permeation and

sorption techniques were originally designed tostudy homogeneous polymer samples
and thus one of the first tasks is to describe what fLnctionals of D and k are

contained in the collected data from such experiments.

In both sorption and permeation experiments an initially penetrant-free

membrane, film or slab of the polymer sample of thickness I (which we take to

lie along the x axis) and known cross-sectional area is rendered impermeable

WA* - 0, on the bounding surfaces normal to the x direction, where * is the

normal vector to these bounding surfaces. In a permeation experiment the surface

6



xr o is brought into contact with a constant activity reservoir which maintains

the penetrant concentration at a fixed value c at x = o. The surface at0
x = £ is in contact with a vacuum, i.e. c(x=t,t) = 0, and the amount of

penetrant which flows through the surface x =k, per unit area up to time t,

Q(t) is monitored as a function of t. A schematic diagram of such a permeability

cell is shown in Figure 2 below.

,r X e"IZr 8.4k.f

pe A e4t .th V,' tewswo;,.
&C.hv,,* --------- £ -e
)heservoAAc 0

Figure 2

The remaining B.C. under which eq. (3) has to be solved are

c(r,o) = 0

c(x=o,t) = Co
c(x=tt) = 0

A schematic plot of Q(t) versus t is shown in Figure 3 below

LII

it

Figure 3
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The steady state slope of this curve (i.e. of the straight line portion) provides

is which used to define the steady state permeation diffusion coefficient Ds

sometimes called the effective diffusion coefficient Deff ,
Js.

SDs = Deff 
(6)

The time intercept of the asympto teto the Q(t) curve defines the time-lag L.

A time-lag diffusion coefficient DL can be defined as

DL = k 2/6L (7)

For ideal Fickian diffusion (D = DO , k = k ) one has0 0

Do = DL = Ds (8)

In general DL and Ds are expected to be different functionals of k and D.

In a sorption cell measurement2 an initially penetrant free film or slab

of known cross-sectional area and width I is suspended in a constant activity

reservoir and the net weight increase per unit area of the sample due to penetrant

diffusion up to time t, M , is recorded. A schematic diagram of the apparatus

is shown in Figure 4 below:

COSt.

Figure 4

The remaining B.C. are

c(r,o) = o

c co at x = o,9 (9)

Mt is directly proportional to the volume average of c(r,t), < crYt)>v .

The data is often plotted as Mt / M, versus (t/ Z
2)112 as shown schematically

in Figure 5 below:

/
u /

Figure 5 8
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An initial time diffusion coefficient, DI, is defined by

rd (Mt/Mm) I2
d(ti1/2 /0 t T6_ = DI1 (10)

Sometimes one employs also the "half time" diffusion coefficient defined by

D1/2 = 0.04914

t7 12/1 
(1)

where t1/2  is time takenfor Mt/Mo = 1/2.

A long time diffusion coefficient, D.t. can be obtained using the relation

[ d in (1 - Mt/M)] t_. -2 = t. (12)

In the case of Ideal Fickian diffusion

Do= = /2 2 Di.t., (13)

but for inhomogeneous diffusion DI, D1/2, D .t. are different functionals of

D and k.

Results are only known for special cases:

Case 1. Concentration dependent diffusion coefficient for which D = D(c)

and k = k(c). This occurs with homogeneous polymer samples in which the penetrant
"plasticizes" the sample and generally makes it easier for subsequent penetrant

molecules to diffuse in the sample. Thus the only real inhomegeneity is due to the

external penetrant concentration gradient impressed on the sample to study diffusion.

Eq. (3) reduces in this case to the non-linear form of Fick's second law:

ac =_Lf (c) acI in o<x<k
at ax ax (14)

with1)(c) given by

I(c) = D(c) k(c) d(c/k(c) /dc (15)

For permeation (B.C. given by eq. (5) the steady-state version of eq. (14) is

easily integrated to give the steady-state concentration, cs, achieved as t-.

The steady state permeation diffusion coefficient is simply a concentration

averaged D(c)
2

Ds = 
0Ic jo(c) dc. (16)

0 0

The time lag L is a simple functional of cs and (c) as can be seen by direct

9



integration and integration by parts of eq. (14) and yields 3.

D z 2 fo(c) dc

J x c5 Wx dx

C o

2 [) Z(c) dcx cx)d

6 dc c)(c) ) duf U (17)

0 C

No exact analytical results are available for the sorption diffusion coefficients

defined by equations (10), (11) and (12). Extensive numerical calculations

suggest that
4

D 5 c0 - 5/3 J0 c 2/3 D(c) dc (18)

and
5

.2)(c0) (19)

Another practically interesting limiting case is:

Case 2. The Linear Inhomogeneous Medium for which D = D(r) and k rk()
only. Experimentally this is achieved by carrying out permeation and sorption

runs for different values of c and extrapolating the data to c0--o. Eq. (3)

now reduces to a linear partial differential equation on which one can employ

usefully a one sided Laplace transform with respect to time. In permeation there

is no generally valid analytic expression for Ds for artitrary random inhomogeneity

distributions but there are special random geometries for which Ds is known or

for which strict bounds for Ds are known. These results are sumarized in

refelrences (1) and (4). Again one can show 6 by direct integration that for

permeation (B.C. given by eq. (5))

D L ~[(cs A - <k4 (c2 /k>,]- (0

c 02(0

Using an eikonal solution of the Laplace transformed eq. (3) and exact Laplace

transform asymptotics for the t-o limit one can show that

10
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D1/' 1 '1/4 112' 12 2
D1  4

1 1  k1 2 +S ((k) (21)
2f ND 3/4 k I/ F 4 (03/ 4 kl/ 2 )

<D-1/ 4 kl/ , - 2

= k~ k ( D3/4 kl/2Y )- I
where ("'*o and (.. stand for surface averages over x = o and Z respectively

and the second equality only holds if the distribution is statistically homogeneous

and isotropic. No analytic result for D.t. (cf. eq. (12) is known.

A specialization of Case 2 is:

Case 3. The Linear Laminated Medium for which 0 = D(x) and k = k(x) only.

The Laplace transform of eq. (3) is now an ordinary linear second order differential

equation. A variety of authors have obtained explicit results for this simple

case which we list below: (P(x) = D(x)k(x))

D= Z 2/[ I k(x)dx) dx ,P(x) 1] (22)

0 0

D = Z2 dx / P(x k X x) dx"dx'dx, (23 1\

0 0 X X

DI  =D/2(o) k() DI 2(.)(o + 
(24)2

2f k(x)dx 
(

0

and D.t. estimates are available from WKB asymptotics. A natural inho-ogeneity

scale can be introduced in this case from measured Ds and DL values.
7 8

The principal open problems in this field deal with the meaning of the

various experimentally measured diffusion coefficients Ds, DLs D D.t. etc.

in the general case where D = D(r,c) and k = k(r,c) and neither D or k can be

factored into a product of a function of r and c only. Perhaps a completely

different strategy for employing these measurements is required to extract

useful information about the inhomogeneity distributions.

11 -
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AERODYNAMIC BREAKUP OF VISCOELASTIC SOLUTIONS

Joseph E. Matta
OPhysics Branch

Research Division
Chemical Systems Laboratory, USAARRADCOM

OT Aberdeen Proving Ground, Maryland 21010

ABSTRACT. A helium activated firing device was used to propel viscoelastic fluid
slugs (35Occ) to Mach I velocities. Aerodynamic forces disrupt the slug which eventually

m transforms into a cloud of droplets that falloLntbaground below. Various cQflpntations
and types of polymethyl methacrylte (PM MA) in diethylmalonate(DE M) were
disseminated. The resultant average drop sizes for each trial were measured and shown
to significantly increase with the addition of polymers. A correlation between average
drop size and fluid viscosity was not observed. Both a relative relaxation tim, Al I
from a simple die swell experiment and the first normal stress difference IiJcbrrelated
dissemination trials conducted at ambient temperatures. However, only [he relative
relaxation time correlation was consistent with breakup trials using heated fluids. Use of

/VM !-- for predicting particle size from dissemination tests employing heated viscoelastic
fluids can produce considerable error.

I. INTRODUCTION: Aerodynamic forces are often used to break up liquids for
various applications, e.g. paint spraying, fuel combustion, aircraft dissemination of bulk
liquids for fire fighting and insecticide applications, etc. Although various studies dating
back many years have been aimed at an understanding of the mechanics of aerodynamic
liquid breakup, aside from low Reynold's number jet breakup (Rayleigh), only empirical
models exist to describe such behavior. For newtonian liquids the resultant drop sizes
(the usual dependent variable of interest) is correlated to the liquid density, surface
tension, viscosity, and relative air velocity.

However, when newtonian liquids are subjected to a relatively high air velocity,
sm all particles norm ally result. For various applications this is often undesirable. Sm all
drops remain air borne for a cqn~iderable time and often fall to impact on the intended
location. Various investigators'- have shown by adding polymer to the solution one can
significantly increase the particle size and thus reduce the settling time. The addition of
polymer results in a non-Newtonian, viscoelastic fluid. The breakup mechanisms of
polymer solutions are very complicated. Not only are the fluids elastic but usually also
thixotropic in behavior.

A recent wind tunnel study I was conducted to investigate the effect of
viscoelasticity on the resultant drop size. Various viscoelastic fluids with similar
densities and surface tensions were injected concurrently into a high velocity airstream.
It was possible to correlate the dissemination with the fluid relaxation time (/b
deduced from a simple die swell experiment. In addition to (e/e 0. %), the first ho Aal
stress difference Ni measured at 500 sec - also correlated the breakup results; but
since considerable uncertainty exists over the breakup deformation rate, the shear rate
independent (3/605% ) was considered preferable over N for predicting particle size.
However, it was su'ebsted that dissemination of heated fluds would enable a comparison
of the validity of the two correlating variables, since N, decreases much more rapidly

* A relative relaxation time was calculated for each fluid from

the amount of shift necessary to superimpose all the die swell
curves onto the chosen, 0.5% PMMA/DEM, swell curve.
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than does ( 0/e 0.5% ) with an increase in temperature. This report describes such an
experiment wher viscoelastic fluids both at ambient and elevated temperatures were
disseminated. Correlations between resultant drop sizes and various rheological
properties were evaluated.

In contrast to the earlier effort where small diameter (4.5 cm) viscoelastic
ligaments were slowly ejected into a high velocity airstream (200 m/sec), this study
describes a system where 7.6 cm diameter viscoelastic slugs ( 350 cc) were ejected with
high velocities (Mach 1 ) into ambient air. This system was developed to more closely
sim ulate high speed delivery conditions for large bulk liquid quantities and yet provide a
relatively inexpensive and reproducible testing procedure.

IMI. EXPERIMENT:

A. Test Procedure: A helium activated firing device was used to project liquid slugs
that were 7.6 cm in diameter to Mach 1 velocities (Figure 1). The primary component of
the firing device is a 7.6 cm solenoid valve. To the breach side is attached a cylindrical

as reservoir 14 cm in diameter and 61 cm long. The aluminum barrel has a smooth bore
7.6 cm ID) that measures 1.8 meters in length. The solenoid actuates within 9
milliseconds, opening a clear path between the pressurized gas reservoir and the barrel.

Before loading the test liquid, a polyethylene cylinder is inserted down into the
barrel to act as a pusher on the test fluid when the pressurized helium is released. The
cylinder has an attached O-ring seal to prevent intermixing of the liquid and gas. The
liquid is then simply poured into the inclined barrel through a loading port just in front of
the pusher. When the gun is actuated the pusher cylinder accelerates and forms the
liquid into a cylindrical slug prior to exiting the muzzle. After the slug exits the gun
barrel, aerodynamic forces begin to disrupt the slug which eventually transforms into an
aerosol of droplets that fall on the ground below. The gun barrel is vertically inclined 20
degrees from the horizontal plane to assure that complete aerodynamic breakup occurs
before fallout and to spread the drop pattern over a sufficiently large area for proper
sampling.

Before each firing, sampling cards mounted on plywood squares (92 cm 2 ) were
placed on the ground to form a sampling array (lOOm) in which card spacing in the
lateral and flight direction was 3.0 and 2.4 m, respectively. In addition, spin samples
were used along the axis of flight and two neighboring rows. The spin samplers are
designed to permit sampling and avoid stain overlap that would otherwise occur in the
high density deposition areas. These spin samplers consisted of a circular (30.5cr
diameter) paper sheet rotating (10 rpm) under a cover having a sector shape (58cm )
opening. As the drops settle towards the ground a new portion of the sampling sheet is
continually exposed. This decreases the density of droplet deposition and loss of data due
to overlap that would occur were the drops allowed to cumulatively impact on a
stationary sampling area.

After each firing, the drop impacted witness cards were collected and allowed to
dry. The resulting circular drop stains were later sized on a Quantimet 720 Image
Analyzer* and converted to actual drop diameters using a previously determined spread
factor relationship. Figure 2 shows a typical spread factor regression obtained for
measured stain diameters of known drop sizes. A cumulative mass probability plot was
then prepared to determine the resultant mass median diameter (M M D) of the aerosol

* Manufactured by Cambridge Instruments, Monsey, New York.
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cloud that was generated in each test. By assuming the droplets collected on each
sample card were representative of the surrounding area the sampling efficiency of the
experiment was estimated comparing the calculated mass deposited on the ground with
the actual fluid quantity disseminated (370 grrs). The calculated disseminated mass was
obtained by summing the products of each ,ieasured mass density deposition with the
mesh sampling area. The ratio of the measured with the actual disseminated mass is
referred to as the m ass recovery.

As a data gathering tool and to provide a pictorial history of the dissemination
process, two high speed cameras recording at 3000 frames per second with overlapping
fields of view are employed. Timing dot generators were used in conjunction with the
cameras to accurately determine the framing rate necessary for establishing liquid
velocity. A meter scale was placed at the line of fire as a distance reference. In order
to highlight the liquid mass on film, a white cloth was suspended behind the path of the
liquid slug at the same angle of trajectory. A series of timing devices were integrated
into a com mon firing box to properly sequence the start of the cameras and the firing of
the gun. The films were later analyzed on a Tele-Cordex film reader which permitted
determination of liquid velocity and other visible aspects of the dissemination process.

Test Fluids: The solvent used in the study was diethylmalonate, DEM, which was
converted into a viscoelastic liquid by the addition of various concentrations and types of
polymethyl methacrylate to give a range of liquid char~acteristics. The polymers used
included: (a) a polymer of high molecular weight, 6 x 10 , obtained from Rohm and Hats
Co. referred to as PMMA, (b) a copolymer of medium molecular weight, 1.9 x 10" ,

composed of 80% PM MA and 20% poly (ethyl/butyl acrylate), also from Rohm and Haas,
and used at a 5.2% concentration Ond (c) DuPont's Elvacite 2041 at 9.8% concentration,
the lowest molecular weight, 4 x 10 , powder tested. Two percent Calco Oil Blue ZV was
adged to all solutions to enhance drop stain msasurements. Both the density (1.05 g/cc @
25 C) and surface tension (30.4 dyne/cm @ 30 C) were similar for all the tested fluids.

The viscosity, n , and first norm al stress difference N 1 of the test fluids were
measured using a Weissenberg Model R-18 Rheogonimeter with a .5 degree cone angle
(Figure 3 & 4). The shear rate was increased until an observable flow instability
occurred. The polymer solutions are viscoelastic as shown by their viscosity variation
with shear rate and their measurable first normal stress difference.

s 1 The die swell ratio was measured for the fluids over a shear range of 500 to 5000
sec- (Figure 5). The swell ratio D /D was determined from the maximum diameter
along the jet D, and the inner dia'met~r of the nozzle D The fluid was ejected
vertically downward from a 7.6 cm reservoir through either a T.78 or 1.27 m m nozzle with
length to diameter ratios of 85 and 120, respectively. No dependence of swell on nozzle
diameter was observed. The swell-shear behavior is similar for all the fluids except the
most elastic (2.1% PM MA), which appeared to exhibit some sort of instability towards tle
higher shear rates. Assuming the swell is dependent only on Weissenberg number (t )
one can calculate a relative relaxation time for each liquid by the amount of horizontal

' shift required to superimpose all the curves. The 0.5% PM MA fluid was chosen as the
reference fluid to which other curves were shifted. The essentially parallel die swell
curves result in relative relaxation times that are independent of shear rate (table 1).

III. RESULTS: Cumulative mass probability plots for each dissemination trial indicate
that log-normal distributions adequately describe the resultant drop sizes. Figure 6
shows such a plot for the Elvacite dissemination trials. From the plot the mass median
diameter M MD was determined graphically at the 50% point of the cumulative mass.
The geometric standard deviationa is given approximately by the diameter ratios
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corresponding to the 84/50 or 50/16 percent cumulative mass values4 . Similar plots for
each fluid tested were made and results are sum marized in table I. For the majority of
tests the mass measured was within 30 percent of the actual dispersed mass, although
greater deviations were occasionally observed for the more elastic fluid trials, where the
larger drops reduced the sampling accuracy.

It is obvious from the data in table II that viscosity alone does not account for the
increase in resultant particle size. The 1.0 and 1.5 percent P M M A solutions have lower
and/or nearly similar viscosities, respectively than the copolymer and Elvacite solutions
but yet the resultant M M Ds are considerably larger for the P M M A solutions.

Correlations of the M M Ds values obtained and the liquids' rheological properties
were attempted in terms of both the relative relaxation time (figure 7) and first normal
stress difference N1 measured at 500 sec (figure 8). The solid lines are the least square
regressions and the dashed lines represent the 95% confiderce limits.

The 500 sec"1 shear rate* was chosen sine it )rovides the best correlation
between M M D and N1. As in the wind tunnel work , boti variables correlate with the
M MD results. However, in the present field study, greater sensitivity with N1 and
(e/0 n  ) is observed, which is probably a scaling effect. For the tests using the helium
gun, Ad- range in resultant M M Ds varied about an order of magnitude, while in the wind
tunnel study where smaller initial ligament diameters of the same fluids were
disseminated, a variation of only a factor of two was observed.

Although both parameters appear to correlate dissemination results, rheological
measurements at elevated temeperatures indicate that N decreases more rapidly with
temperature than does ( e/6 0.5). Thus, dissemination oi heated fluids should enable a
distinction to be made between The two correlating variables. Both first normal stress
and die swell measu6ements were made for the 2.1% PMMA solution at various
temperatures up to 90 C* oyer the shear rate range indicated in Figures 9 & 10. From
these results, N (500 sec-") is shown to be more sensitive to temperature changes
than (e/6 0 ) (Figurp 11). With a 700C increase, N, decreases about an order of
magnitudeofioe than( 8/80.5%).

A series of dissemination trials were conducted with the 2.1% PM MA solution at

• The error bars shown for the data points were estimated from
their respective mass recovery values. It was assumed that the
average percent difference between the actual and measured mass
for each trial is approximately three times the error of the MMD
calculation since drop mass varies as the cube of the diameter.
An additional 5% error was included to a ccount for the
uncertainty associated with graphical determination of the MMD
from these cumulative plots.
** This value is not obviously unrealistic since a 2 miec
breakup time estimated from the inverse of the 500 sec rate
(i.e. assuming the process time is inversely proportional to the
deformation rate) does not appear inconsistent with the data
obtained from the dissemination films. However, without
knowledge of the breakup kinetics deformation rate estimates
involve considerable conjecture.
* Due to fluid stability it was not possible to measure N, above
650C.
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various temperatures, and the results are showd in table Ill. For these tests, the fluid
was heated before being poured into the barrel, and the barrel itself was wrapped with a
heating coil to prevent the liquid from cooling. Temperatures were measured through
the filling port im mediately before dissemination. Figures 7 and 8 show how the M M Ds
compare with the earlier correlations found for N, and(e/05%) at ambient
temperatures. As can be seen, the M M Ds for the heated fluid trials agree considerably
better with the (6/0 X). rather than the N1 correlation and thus ( 0/0 5%) is
preferrable for resultait particle size predictions. The small deviation frdm the
regression line for the heated fluids is not unexpected, because of the slight cooling that
may occur during the dissemination process.

IV. DISCUSSION: Since the breakup results correlate with the relative relaxation time
rather than the fluid shear viscosity one might expect the extensional fluid behavior to
significantly influence the atomization process. Attempts were made to coprelate the
dissemination trials uisng the transient convected Maxwell expression for the
elongational viscosity, nE i.e.,

-2 exp(-(1 - 2eHM ir/8M)] - exp(-[1 + O i]t/eM)]}nE - {1 - 28eMil - ex([M 0 tB)

where and m are the elongation rate and 1 Maxwell relaxation time, respectively.
Choosing an elongation rate of about 30 sec- it is possible to correlate the ambient
dissemination trials with the predicted elongational viscosity at a time = .1 sec.
However, the heated fluid trials were not consistent with this correlation.

The failure is not too surprising when one considers the higldegree of nonlinearity
bably occuring during atomization. Various other constitutive equations may better

o.scribe the breakup process. Currently we llan to estimate the extensional behavior of
the tested solutions using the B KZ model by measuring the elastic strain energy
function from a stress relaxation experiment.

Although we have not yet found an elongational viscosity expression to correlate all
of our breakup trials, the relative relaxation time deduced from the die swell experiment
is consistent with the elongational breakup mechanism if8one considers the swell
phenomenon as an extensional effect. Recently, Tanner has suggested this by
associating the die swell behavior of liquids with the outer sheath extension of the
ejected fluid rather than the usually proposed elastic recoil effect. Furthermore, since
the fluids are extruded vertically downward the gravitational force tends to stretch the
Jet and is possibly responsible for the observed correlation with breakup results.

In any case, although the relationships between dissemination and the die swell
mechanism is not clearly understood, the relaxation time does correlate breakup results
and as a figure of merit alone is considered a viable param eter for resultant viscoelastic
particle size predictions. Both our earlier wind tunnel results and the dissemination
tests discussed in this study indicate that the use of the relative relaxation time is
preferable to N1 for predicting particle size. Not only is the relaxation time shear rate
independent, thus eliminating any need for estimating the shear rate of the breakup
process, but the relaxation time parameter also correlates with both the ambient and
heated temperature results. The use of N1 for predicting particle size when heated
fluids are disseminated can produce considerable error. In addition, reliable high shear
rate N1 measurements are impossible to obtain with the current state-of-the-art
techniques.
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Table I: The Relative Relaxation Times Deduced From a Die Swell Experimental Using

Dissemianted Test Fluids

Test Fluid at 210C e/e 0 .5 %

0.5% PMMA 1.0

1.0% PMMA 4.3

1.5% PMMA 10.0

2.1% PMMA 26.6

5.2% Copolymer 2.0

9.8% Elvacite 2.0
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Table 11: Field Disse mination Results - A m bient C onditions

TEST # Fluid % Recovery MMD um "g

1 0.5% PMMA 81 340 2.2

2 0.5% PMMA 78 370 1.8

3 1.0% PMMA 84 1450 2.7

4 1.0% PM MA 72 1200 3.0

5 1.5% PMMA 61 1700 2.3

6 1.5% PMMA 101 2450 3.3

7 2.1% P M M A 160 4100 2.8

8 2.1% PMMA 150 4100 2.8

9 5.2% Copolymer 107 480 2.2

10 5.2% Copolym er 81 430 2.0

11 9.8% Elvacite 102 420 1.6

12 9.8% Elvacite 62 460 1.6

Table III: Heated 2.1% P M M A Dissemination Results

Test# Temperature, °C % Recovery MMD um a

13 38 115 3800 3.0

14 68 81 1070 2.3

15 68 106 1450 2.5

16 68 102 1500 2.5

17 95 83 820 2.2
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Figure 1: A sketch of the 7.6 cm I.D. Helitum crun used to
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Figure 5: Die swell measurements of disseminated test fluids. Test conditions,
( / ) indicates 1.27 mm, I.D. nozzle otherwise 1.78mm; (0) 0.5%
PMMA; (0) 1.0% PMMA; (<>) 1.5% PMMA; (L) 2.1% PMMA; (0) 5.2%
Copolymer; (7) 9.8% ELVACITE.
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RAY TRACING !IETHODS FOR CALCULATION

OF ATMOSPHERIC REFRACTION

Eugene A. Margerum

U. S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060

ABSTRACT

Equations for tracing rays through an atmospheric medium of continuously

variable refractive index are obtained in spherical coordinates from Fermat's

principle by applying the Euler equation. By introducing canonical variables

they are reduced to a set of first order differential equations in normal form,

suitable for stepwise numerical integration. Altitude and azimuth angles are

introduced and a transformation is derived for determining the refraction errors,

including lateral refraction, from the integrated results. The spherically

symmetrical case is considered in more detail and leads to an equation for the

error in altitude angle expressible as a quadrature over the radial coordinate.

A perturbation formula for obtaining the part of the refraction error due to

differences between an actual atmospheric profile and some standard atmospheric

profile is derive by taking the functional (or variational) derivative. The

resulting integral over the radial coordinate has a particularly simple form.
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RAY TRACING IN SPHERICAL COORDINATES

According to Fermat's principle (l) (also referred to as the principle of

least time), the ray joining any two arbitrary points, Pi and P29 is determined

by the condition that its optical length

S .1P2 n ds (1)

be stationary as compared with the optical lengths of arbitrary neighboring

curves joining P1 and P2. If the refractive index n is considered to be a giv-

en smooth continuous function of position and the location along the path is

given in terms of a parameter t, then an actual ray path must furnish an ex-

tremum

6P2 n(r, e, ¢)S(r. 0, , 69 ;)dt = 0 (2)f Pi

where spherical coordinates are indicated with

ds - S(r, 0, )=V 2 + r262 + r2 sin2(3)
t (3)

and where the dots indicate differentiation with respect to t. The partial

derivatives

* aS r(;2 + sin 2 E *2), aS=
ar S

aS r2 sin e cos 0 2 aS r2e (4)
30 s ' S

as= 0S r2 sin 2 a
s

will be useful in evaluating the Euler equations in the derivation that follows.

Taking

f(r, e, *, ;, O, ) n(r, e, ¢)S(r, , r, , *) (5)
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in equation 2, the rays must lie along curves satisfying an Euler equation

for each coordinate

(if ~f

d ( f af

d af) Lf

or by making use of the relations given in equations 4 and 5

dn a n r(62 + sin2 0 $2)
dt S r S

d r26  Son r2Sino cosO 2()
Tn L _ ____

d (nr2 sin2 0 San =-

By taking the parameterization to be given in terms of arc length s along a ray

5 =S -SZ1 (8)dt

the differential system for the rays is simplified by eliminating the

radicals appearing in S above.

d *n - an - nr(62 + sin 2 0 ;2) = 0

US an

dS nr26)- 2- - nr2 sin 0 COS 0 ;2 = 0()

ds a
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If a canonical system of variable is introduced where

Pr= nr

Pe nr26  (10)

p= nr2 sin 2 e 0

the corresponding first order differential system is easily put in normal

form.

= 3( 2 + * ) +7

r COS 0 p 2 + an

= nr sin ° S a0

* an (11 )

n

t P
nr

nrz sin 77

This system is suitable for numerical integration by many standard methods in-

cluding the Runge-Kutta method. The equations are not completely independent

but are inter-related by the implicit relationship from equations 3 and 8

2 + r2 62 + r2 sin 2 0 ;2 = 1 (12)

which requires that the sum of the squares of the local direction cosines of

the tangent to the ray at any point be unity. This permits the integration
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to be initiated from a knowledge of position coordinates and two angles

sighted along a ray; for example altitude and azimuth angles. It can also

facilitate the change of independent variable from s to one of the coor-

dinates if desired; for example if it is desired to increment the radial

distance r in fixed predetermined amounts. In such a case, the six equa-

tions given by 11 are reduced to five. For a general integration with s

as the independent variable, the initial conditions consist of the coor-

dinates r, 0, € and the direction cosines ara %,' a,, related to the con-

jugate variables, as follows.

dra r  s ' P r = n t

do
=r dO P0 = nra( (13)

a€ =r sin.d( P nr sin ea

The altitude angle a and azimuth angle A are given by

sin a = ar

(14)

tan A = ±2a 0

where the ambiguity of sign must be rectified to conform with the spherical

coordinates, since various defining conventions are used for azimuth. By

making use of the identity

ar2 + a 0
2 + a 2il (15)

it is easy to obtain the direction cosines in terms of altitude and azimuth.

ar = sin a

Z cos a cos A (16)

= ± cos a sin A
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ATMOSPHERIC REFRACTION INCLUDING LATERAL REFRACTION

Assuming the quantities h_%n, 2D_, -are known functions of position, a
ar ae a

ray may now be traced up through the atmosphere by using the system of equa-

tions 11, for any starting location ro, 00, 00 and direction aro' aeo, a€o'

Assuming the initial altitude angle is great enough that atmospheric ducting

and subsequent return of the ray does not occur, the ray eventually will

emerge from the atmosphere at some location rf, 0f, f with local direction coor-

dinates arf' "of, a@f" In order to determine the amount of bending of the

ray, it is necessary to know the transformation of the final direction coor-

dinates back into the initial frame. This transformation will now be obtained.

For a general position vector R given in rectangular components but expressed

in spherical coordinates

R i r sin 0 cos € + j r sin e sin € + k r cos 0 . (17'

A local reference frame of unit vectors r, $, maybe defined by

r / t4- l= i sin 0 cos € + ^ sin 0 sin € - k cos 0

L : Ie= i cos 0 cos € + j cos 0 sin @ + k sin o (18)

R *= sin + JIcos 0

If the unit direction vector of the ray

a r r + a6 + (19)
r

is expressed in terms of the initial frame, the components are found to depend

on the cosines of angles between the initial and current frame vectors
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. . 0 [(.;o )ar+ 0 )a + ( )a

+ 60o(;.6o)ar+ (8-6o'a + ($. o6)a] (20)

+ j[(.o)ar+ ($'$o)a + ($,$o)]

where the direction cosines involved are readily obtained from equations 18

applied at the initial and current positions. (The prime added to a' is to

avoid confusion with the starting direction &0),

.ro, = sin 0 sin 00 cos (p-€o) + cos 0 cos 00

r.00 = sin 0 cos 00 cos ( -'o) - cos 0 sin 00

;.;o = sin 0 sin (0-0o)

6r = cos 0 sin 0° cos (-o) - sin 0 cos e (21)

0.00 = cos 0 cos 00 cos (€' ) + sin 0 sin e.

;4() = cos e sin (€'*)

;-;o =-sin 0osin (€-,o)

) 0.o _cos 0osin 0

cos ( - o)

By applying equations 20 and 21 to the emerging ray direction af, the components

referred to the initial frame can be expressed in matrix form as given by equation

22.

Q~ %i o11ft Sift go CftS($.40) .Cos atCS o  Co si n i. e~cas(#,t.%) sin t x %o * -sint go lift(y.i] f1
O S o O CS 60 £Co ,'9. Cos of sin t o ofS o% so Co(#1.4) Sin Of i so* Cos 0, (22)*~,

1.a., n 1 tl 9i (#f-) ea o sin - ) cos (ft )  2
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It was found that the transformation matrix could be factored as

'fsin o 0c 0 c os o 0 cos 0 sin 0

.o.f = cos 00 -sin e 0 0 0 1 sin -Cos

a f_ 0 0 1. .-sin(f- 0co1-[in o s CO O 01 [rfi

sin0  0 -1 n (23)
Lcos of -sin of 0] P fj

or alternatively in the form given by equation 24 as probably the most convenient

for computations.

f s in = Coss( - aros ] (250

r 0

sin c.f Cos O f 01 Of-

,cos of -sin of 0, (24)

Returning to equation 14, the vertical refraction correction is given by

a, - a'= arccos a' - arccos a± (25)
f 0 rf ro

and the lateral refraction error by

Aj - A = arctan (± -v-)-arctan ( Q -*o) (26)
0 c f C90

"±arctan {f O° f

where the sign again depends on the convention uset for azimuth
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THE SPHERICALLY SYMMETRICAL CASE

For the case where the refractive index depends only upon r, equations 9

become

d (n;-) - n. nr(6 2 + sin
2 0 ;2) = 0

ds ar

d (n r26) - nr2 sin o cos ® ;2 = 0 (27)

nr2  sin 2 e C,

where an integral has been found for the last equation. The coordinate system

may be chosen so that initially L' = 0. Then, C1 = 0 and At vanishes identicallyds ds

€ = o = constant (28)

and the problem is reduced to two dimensions. Using the fact that 0 0, the

second equation of 27 becomes integrable.

nr2 - = C' (29)ds

Inserting the resultant value for - into the first equation of 27 (together with
ds

0) yields the following relationship.

d(n dr) -2n C2
2 = 0 (30)

ds ds ar nr3

Multiplying by n and using the relationship d dr d

nk dr (n r) nnc C 2 =o(31)
ds dr ds d d

and integrating yields

(nd- 2 
- n2 + = C3  (32)
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fC22 dO 2

If L 2is replaced by (nr dO), from equation 29, it is found that

n2[(()2 +1] - C".2 (33)

The quantity in square brackets must vanish because arc length s is defined by

ds = 4dr2 + r2 do2 and hence C3 = 0. It then also follows that equations 29

and 30 (in r and o) are not independent. As a matter of convenience, equation

29 will be used and the geometrical relations between dr, ds and do will be

exploited.

As demonstrated in Figure 1, a star is observed at the apparent position

A1 given by angle To.

.*AI

Figure I - Geometrical Parameters for the Atmospheric Ray Path
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If no atmosphere were present, the actual position A2 would coincide with

A,. For a ray travelling in the reverse direction and emanating at the sur-

face at angle 'o in a medium with variable refractive index, the ray path is

curved and its inclination Y at r is given by

nr(r ) = nr cos T = C (34)

ds

from equation 29 where the constant is determined from the initial values of

n, r and Y.

C = noro cos T 0 (35)

After passing through the region of variable index, the ray will emerge at rf,

Of in the direction Y f toward A2 . By the optical Principle of Reversibility,

an object at A2 would be observed to have elevation 0 , whereas, if the refrac-

tive index were constant (atmosphere removed) it would have its true elevation

angle a. As layers of variable refractive index are added in the reversed ray

system, a would change and so in this inbedded sense can be regarded as a func-

tion of r.

From Figure 1,

a = -= (36)

or

d ! IP dO (37)
dr dr dr

and a may be determined by integrating equation 37. By rewriting equation 34

in the form

nr2 dr do = C (38)
1s -r
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dr d
and using the fact that sin - expression for L is foundds d r

sin T d C C (39)

By differentiating equation 34 in the form

cos -- C (40)
nr

an expression containing L' is obtained.
dr

sin Td__ C + C dn (41)
dr nr2  n2r dr

Combining equations 39 and 41

d do ) -in (42)sinY(--r-d
dr dr nir dr

and using the fact that

sin T = V1l = l y (-) (43)

da

an expression for La is readily found.

dn r dn

da d C U (44)
drn2r '7: nr n -

If this expression is integrated by parts from ro to rf, the value for the

observational error is found

rf r dn

6azaf-a ro Cdr dr (45)6a af- a = nt ,nr. 2

ro -

rJ in r frf nrdr (6

a= arcsec - arcsec (r 4 J 2 (46)r- n ° sec o 2

ro
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where ao = FOS r., no, and af, rf, nf, are initial and final values and whiere C

is given by equation 35.

rf

a - arcsec (nrf sec TO) - o f dr (47)nr°o r- 'non sec To)2 - I

o -J 0

For determination of 6a by numerical integration, equation 45 should be prefer-

able to equation 47 by virtue of its simplicity and certainly a need to carry

fewer significant figures. It can be easily evaluated with the trapazoidal rule,

using a linear interpolation for !k. For higher degree approximations, standarddr
spline methods are suggested. Although it can be integrated by quadrature form-

ulae (e.g. Newton-Cotes), equation 47 appears to offer no distinct advantage.

PERTURBATIONl OF THE SOLUTION

The refractive index function n(r) is given a variation em(r) and

the liew error in altitude angle is obtained from equation 45

Sr djr
O =dr dr (48)

o C l

where

W =(r) n(r) + cm(r) (49)

and

dW_ dn + dm

dr r dr (50)
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By making use of equation 50 and the following Taylor expansion in c,

r r_ L M.) 2 (" )2 -]
C C -lCr E - )+ O(E2) (51)

n 7)T n 1  nr 2

the expression given below is obtained for the perturbed (or varied) integral

rf dn d -__E)2___ L
j T dr+E ... .C I C I dn + dm dr

= r~ 2l f (2r1 2 (2 r) 3/2 + dr (52)

ro  
CV

+ 0(E2)

In equation 52, the full variation is obtained for e = 1 and the conditions

that the first order term give a good representation of the corresponding var-

iation in J are

Em(r) < < n(r)

ddm < dn 
(53)

dr dr

where e has been carried in equation 52 mainly for purposes of identification.

By differentiation and a considerable amount of algebraic manipulation,

the following identity may be obtained
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r dm mr m n
C dr d C C

nrV r d nr.V(/r)2 I [ j 2

(54)

S C J dn

LE [(")2 - /1dr

and this is useful in further simplifying the form of the integral.

rf r. dn r I(nr)
C dr tC

J1=- - dr+t dr

to-

(55)

nr /nr )2
+ V .~~ -:-j1 ::o

By assuming the value of m to vanish at the endpoints,

m(ro) = m(rf) = 0 (56)

the quantity bracketed in equation 55 will also vanish. For the upper end-

point, this is a reasonable assumption since the refractive index should

assume the value for vacuum and variation or perturbatiop is not reasonable.

For the lower endpoint, it is necessary on practical grounds, since any var-

iation of refractive index will disturb the value of C (initial condition)

used throughout the entire range of integration.

4I5
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The first term of equation 55 is the unperturbed error. The integral

in the second term is known as the variational or functional derivative of

J of first order. Taking c = 1 and ignoring higher order terms yields the

first order or linear perturbation of J.

rf )

_f 2__ /2dr (57)

It can be used for approximately determining refraction errors in the altitude angle

due to differences between the actual refractive index profile and the profile of some

standard atmospheric model.
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A TRANSPORT-THEORETIC ANALYSIS OF PULSE PROPAGATION THROUGH
A RANDOM CLOUD OF SCATTERERS

0 I. M4. Besieris, W."E. Kohler and A. I. Tsolakis*
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

o5
ABSTRACT. A systematic development from the Dyson equation and the

two-frequency Bethe-Saltpeter equation of a two-frequency radiative trans-
fer equation suitable for pulsed waves in the presence of a raadom distri-
bution of absorptive discrete scatterers with pair correlations is
presented. The main strength of the radiative transfer theory expounded
here stems from the fact that it is applicable under conditions of large-
angle scattering, statistical inhomogeneities and statistical anisotropies.
It accounts, also, for regular refraction (variable scatterer density,)
absorption and frequency offsets. (-...--. _.

I. INTRODUCTION. Multiple scattering by a random distribution of
discrete scatterers has been studied extensively over the past thirty five
years, primarily because of its relevance to a large number of pressing
applied problems that arise in radio physics and engineering. Fundamental
work on multiple scattering of scalar waves by a distribution of uncorrelated
scatterers was initiated by Foldy [1] and has been developed further by
Lax [2] and Twersky [3]. Based on these original contributions, a great
number of applications have appeared in the literature [cf., for example,
Refs. 4-7] iniolving both the coherent field and the incoherent intensity.
The problem of assessing the multiple scattering effects on scalar and
vector waves in the presence of random distributions of correlated
scatterers is more challenging. Basic contributions along this direction
have been made by Twersky [8], Bringi et al. [9] and Tsang and Kong [10] in
connection with the coherent field, and by Barabanenkov [11], Barabanenkov
and Finkel'berg [12] and Watson et al. [13] in connection with the incoherent
field intensity.

The motivation for our work is based on the absence of a second-order
statistical theory for studying pulse propagation through random distributions
of correlated scatterers. Such a theory is necessary for the development
of predictive models pertinent to (1) pulsed electromagnetic propagation
through complex natural media (e.g., rain, fog, sandstorms, vegetation);
(2) the analysis of obscuration and detection techniques; (3) remote
sensing and identification of aerosol clouds; (4) scattering clouds
consisting of complicated individual scatterers (lossy, anisotropic,
frequency-sensitive, possibly aligned, pair-correlated) with gross macro-
scopic structure (finite extent and variable number density).

*Present address: Bell Laboratories, Holmdel, NJ 07733.
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Our specific goal in this exposition is to derive systematically
a radiative transfer equation for the two-frequency incoherent intensity
function (a quantity related to the two-frequency mutual coherence function
and, hence, to second-order pulse statistics.) The derivation is limited
to scalar pulsed wave, propagating through a random distribution of
absorptive scatterers with pair correlation!3.

The proposed radiation transport equation is based on the Dyson and
Bethe-Saltpeter equations at the level of tie direct interaction and
ladder approximations, respectively. If, ii addition to pair correlations,
the assumptions are made that the number of scatterers is large and the
average distance between any two scatterers is large compared with a
reference wavelength, the Dyson and Bethe-Saltpeter equations are analogous
to those associated with a continuous random medium with fluctuations of
the permittivity which are distributed according to a normal law and with
a deterministic profile directly linked to the number of scatterers per
unit volume.

The transition from the Dyson and Bethe-Saltpeter equations to the
two-frequency radiative transfer equation is effected by a continuous
stochastic transport theory that was originally introduced by Barabanenkov
et al. [14] and subsequently extended to the two-frequency context by
Besleris and Kohler [15-17]. As in their c:ase, our derivation differs
markedly from the usual procedures for obtaining classical radiation transport
equations; the latter rely mostly on consicerations of energy balance, with
no explicit "microscopic" interpretation given to the extinction and
scattering coefficients.

In the following we present a sketch of the proposed two-frequency
radiation transport theory, with primary enphasis on the underlying assump-
tions and the physical interpretation of tl e various terms entering into the
final transport equation.

II. FIRST AND SECOND ORDER COHERENCE FUNCTIONS FOR A RANDOM DISTRIBUTION
OF PAIR-CORRELATED SCATTERERS, PART A: ANISOTROPIC SCATTERING. The deriva-
tion of the Dyson equation for the mean field and the Bethe-Saltpeter
equation for the mutual coherence tensor under conditionj of anisotropic
scattering and in the presence of pair correlations among scatterers is
based on the Twersky procedure. The basic underlying assumptions are the
following: (1) We ignore third-order scattering by two scatterers, fourth-
order scattering by three scatterers, etc. (essentially the Twersky
assumption); (2) All scatterers have the same shape, size and orientation
distributions; (3) We consider only pair correlations and neglect all
contributions from higher-order correlations; (4) The number of scatterers
in a volume is infinite.

We resort, also, to the following notational definitions: (1) Fa:
aincident electric field at position r a; (2)Ea: total electric at r;
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(3) gja Ej: electric field at r caused by the jth particle; (4) <<->>:
j - -a

configurational averaging (over size, shape and orientation distributions);
(5) p(r): particle density function; (6) B'(r., r ): pair correlation
function.

Under the aforementioned assumptions, the Dyson equation for the
coherent vector-valued electric field assumes the form

<<a> a >+ f dr. <g a <> p(r)

+ f dr f dr< >> <<Ga>> <E k > B'(r., B ; (2.1a)

<<G aa f r < a >><Gk >P

« a + f dr fa «G <<r a>)< Z> < > 'rr (.b
=k «-- Z k :-, -

On the other hand, the Bethe-Saltpeter equation for the mutual coherence
tensor becomes

<E E> = <, > <E > <<G. a >> <Ej E J*> <<G. b*>> p(r

+ f dr f dr <<Ga>> <Ej Era *> <<G b*>> B'(r., rm) (2.2)
-7- -in j -- m -j -M

A detailed derivation of Eqs. (2.1) and (2.2) is given in Ref. 18.
The former is at the level of the direct interaction approximation, whereas
the latter is at the level of the ladder approximation. Both are analogous
to equations associated with a continuous random medium with fluctuations
of the permittivity which are distributed according to a normal law and with
a deterministic refractive profile directly linked to the number of
scatterers per unit volume. It should be noted, however, that no counter-
part to the second (collapsed) term on the right-hand side of (2.2) exists
in the continuous random medium case. In the absence of pair correlations,
i.e., B'(rj, r M) 0 , (2.1) and (2.2) reduce to the equations derived

previously by Twersky [cf. Ref. 19].

The vector-valued Dyson equation (2.1) and the tensor-valued Bethe-
Saltpeter equation (2.2) are the basic equations for deriving a tensor-
valued radiative transfer equation for vector waves. Such a derivation
is very complicated and will not be undertaken in this paper. Instead,
Eqs. (2.1) and (2.2) will be "scalarized" in the next section. (A set of
assumptions sufficient for such an approximation is given in the Appendix.)
The resulting equations will form the basis for deriving a scalar radiation
transport theory in Sec. IV.
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III. FIRST AND SECOND ORDER COHERENCE FUNCTIONS FOR A RANDOM
DISTRIBUTION OF PAIR-CORRELATED SCATTERERS, PART B: ISOTROPIC SCATTERING.
In the following, we shall assume that the scattering channel is tenuous,
i.e., the distance between any two scatterers is much greater than a
reference wavelength. We shall also assume scalar isotropic scattering.
In the electromagnetic case this approximation arises if individual
scatterer dimensions are small compared to wavelength and if "gross"
depolarization effects are neglected. In the case of acoustic wave
propagation, isotropic scattering take; place when individual scatterer
dimensions are small compared to wavelength.

Under these assumptions, one deals, essentially, with a scalar wave
theory. The Dyson equation (2.1) simplifies considerably and is rewritten
below in a form suitable for our work in Sec. IV:

[V2 + k 2 + 4wf p(r)] <E(r, k)>

= -4wf f dr' <<G'(r, r', k) <E(r, k)> B'(r, r') (3.1a)

[V2 + k 2 + 47rf p(r)] <<G'(r, r', k)>>

- -4wf 6(r- ') - 4irf f dr"' <cG'(r, r", k)>> <<G'(r", r', k)>> B'(r, r--)

(3.1b)

The notation is identical to the one used in the previous section, except
that E and G' are now scalar-valued. The quantities k and f are respectively
the wavenumber and a configurationally averaged scalar-valued scattering
coefficient. The latter is independent of r; however, it may depend on k
and, in general, is complex by virtue of the absorptive properties of the
scatterers.

The scalar-valued Bethe-Saltpeter equation for the two-frequency
mutual coherence function r'(r1 , r 2. kls k2) E <E(rl, kl)E*(r 2, k2)> can be
written as follows:

[(V 2_ 2) +(k 2 - k 2) + 4wf p(r - 4wf* p(r r (r K29 kl' k
1 r1 1 2 -- =-*p~2) ='(r1  ~2 c, 2)

- -4w(p(r)f <<G'*(r 2 , 1' k 2 )>> r'(rl, Kl' k 2 )

-P(r2)f* <<G'(rl, E2. k I)>> r1(r2, E2. kl' k 2)'
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ll-pl

-47i dr' [f B'( ,r'l- f* B'(r', E2 )][<<G1(
_ l r', k,)>> r'(r', *2, kl, k2)

+ <<G'*(r2, r', k2 )>> r'(El, f', kl, k2)] . (3.2)

The derivation of (3.2) (cf. Ref. 18] incorporates a narrowband pulse
assumption. In this case, the scattering coefficient f depends only on the
prescribed carrier frequency.

The functional forms of Eqs. (3.1) and (3.2) are analogous to those
derived by Besieris and Kohler (15,16) for acoustic wave propagation in a
continuous random medium characterized by Gaussian fluctuations. As in the
case of the more general equation (2.2), no counterpart of the first
(collapsed) term on the right-hand side of (3.2) exists in the continuous
random case. For kI = k9 and in the absence of pair correlations, i.e.,
B'(rI, r2) - 0, Eqs. (3.1) and (3.2) reduce to relationships already

available in the literature [cf. Ref. 19].

IV. TWO-FREQUENCY RADIATIVE TRANSFER EQUATION FOR A RANDOM DISTRIBUTION
OF ABSORPTIVE SCATTERERS WITH PAIR CORRELATIONS: SCALAR WAVE THEORY. In the
Bethe-Saltpeter equation (3.2) for r'(rl, r 2 , k1 , k2 ) we introduce center-of-

mass and difference coordinates and wavenumbers, viz., R - ( 1 + r 2 )/2,

Si -2; ks E (kl + k2)/2, kd k, - k2, and use the notational

definitions r'(r,, r2, k1, k2) = r(R, r, ks, kd), B'(r,, E2
)  B(R, r),

<<G'(rl E2, k)>> I <<G(R, E, k)>>, and M(R, r, k) f<<G(R, r, k)>> B(R, r).

We introduce, also, the Fourier transform pairs r(R, r, ks , kd) +--+ f(R, i,

ks, kd), B(R, r) +-P *(R, ), and M(R, r, k) i- M(R, Q, k) = M'(R, K, k) +

i M'(R, k. It should be noted that M(R, r, k) is analogous to the "mass
operator" entering into the Dyson equation in the case of smoothly inho-
mogeneous media. Furthermore, the quantity f(R, K, k, kd) is the two-

frequency extension to the phase-space Wigner distribution function.

We consider next smoothly inhomogeneous media for which r(R, r, ks, kd),

B(R, r) and <<G(R, r, k)>> vary slowly with respect to the sum variable R,
and rapidly with respect to the difference variable r. We make also two
further assumptions: (1) the ratio of difference to sum wavenumbers is
small compared to unity, i.e., Ikd/ks8 << 1; (2) the scattering and regular

losses are small but not negligible. Within the framework of these restric-
tions scattering becomes significant (cf. Ref. 18 for details] on the
"energy" surface

H(R, 2 K [ k 4wfR p(R) 4w '(R, K, k )] - 0 (4.1)
k 2 _ks -

1 .1

/ m i i | | i | _



which is independent of regular and scattering losses. The quantity fR in
(4.1) denotes the real part of the complex scattering coefficient f.

In the general case of statistically anisotropic pair correlations of
the scatterers we seek a solution in the form

f(R, K, ks, kd )  o(R, K, ks , k d ) + fI(R, K, ks, kd) (4.2)

The first term on the right-hand side of (4.2) is the coherent part of the
two-frequency Wigner distribution and is directly related to the solution
of the Dyson equation (3.1). The incoherent part of the Wigner density
function, on the other hand, is chosen as follows:

f1(R, !, ks, kd) = ksIVK H'(R, K, ks)I IVK H'(R, !i, ks)1- 3

x 6[H'(R, K, k )] I(R, s, ks, kd ) ; s = K/K (4.3)

The quantity I(R, s, ks, kd) is the two-frequency incoherent "ray" intensity

at the point R and in the direction of the unit vector s.

Let, next, kef f (R, s, k.) denote the value of K for which H'(R, KS,

ks ) = 0, and define an effective index of refraction as follows:

neff(R , s, ks) = 1V K H'(R, KS, ks)j/k ; =keff(R, s. k ) (4.4)

Let, finally, O(R, s, k s) be the angle between the direction of the group

and phase velocities. With these definitions in mind, the incoherent ray
intensity I(R, s, ks, kd) is found to obey the two-frequency radiative

transfer equation

n2ff(R, s, ks) d fl(R, s, k s , kd)jcos O(R, s, k_)1-1 n 2 (R, s, k
ef-- s dl s d s eff - - s

{-4 f1 p(R) - 4w _'[R, kff(R, ks)S, ks + - ksk}

x k-l neff (R, s, ks) I(R, s, kd)

+21f 2 k 2 f d' k2ff (R, A' e _f- -, s Rs k)

' - e k)neff(R, s s)nf('
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x 1cos O(R, s', k s )1-1{_ [ , keff(R , s, k)s - keff(R , s, ks )s'] + o(R)}

x I(R, s', ks , kd)

" 21f12 neff(R , s, ks)1cos O(R, s, ks dK' { [R - keff(R, s, k s)S - K']

R
3

+ p(R)} f (R, K', ks , k d (4.5)

where Q denotes the range of s' over the surface of a unit sphere.

Equation (4.5) for the two-frequency incoherent intensity I(R, s, ks, kd)

is the main result of this paper. In interpreting this equation, we should
note the following: The left-hand side of the equation is a convective
term; the ray paths correspond to an effective medium determined by tre
density of the scatterers p(R), the scattering coefficient f and the
spatial correlation function of the scatterers. [The quantity dl denotes
the differential of a curvilinear ray passing through the point R in the
direction V H'(R, K, k s).] The first and second terms on the right-hand

side of (4.5) are due respectively to regular and scattering losses; the
third term arises because of frequency offsets; the fourth one is the
scattering t rm; finally, the last one is the source term, representing
the "feeding" of the incoherent intensity by the coherent part of the Wigner
distribution function.

In order to compute the second-order pulse moment <E( r, t )E*(r2 , t 2 )>

at the receiver site, we must first find the two-frequency mutual coherence
function E(rw, w1 )E*(r 2, w2) and then perform a two-dimensional Fourier
transform wits respect to I and w2 " In the ladder approximation, the
two-frequency mutual coherence function obeys the Bethe-Saltpeter equation
(3.2). The phase-space analog of the two-frequency mutual coherence function
is the Wigner distribution f(R, K, ks, kd). The latter is decomposed in

(4.2) into a cohexent part, which is directly linked to the solution of the
Dyson equation (3.1), and an incoherent part directly expressible (cf.
Eq. (4.3)] in terms of the two-frequency ray intensity I(R, s, ks, k )

The latter obeys the radiative transfer equation (4.5).

Not all the successive steps outlined in the previous paragraph need
be followed for obtaining information about second-order pulse statistics.
If, for example, such information is restricted to the incoherent part
of <E(r1 , t1)E*( r2, t2)>, direct usage can be made of the two-frequency

ray intensity 1R, s, ks, kd), as explained below.
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Let ri(R, , ks , kd) + f1(R, K, ks, kd) denote the incoherent part

of r(R, K, ks, kd). Then,

d'kk-2 n- (R, k s)k2 ff(R, s, k)

x Icos O(R, s, k_)1I1 I(R, s, ks, kd)exp{i k (R, a, k )s r r} (4.6)
S d eff- S

which establishes a useful connection between the photometric ray intensity
I(R, s, ks, kd) and the incoherent part of the two-frequency mutual coherence

function.

V. CONCLUDING REMARKS. A radiative transfer equation for pulsed scalar
waves in a random distribution of pair correlated absorptive scatterers
has been derived systematically from the Dyson and Bethe-Saltpeter equations.
Detailed solutions -- both analytical and numerical -- are presently under
consideration. An important question in this context is whether controlled
experiments could be carried out so that comparisons would be made with
theoretical results.

An open research area in propagation through random distributions of
scatterers is the systematic derivation of a tensor transport theory from
the Dyson equation (2.1) and the Bethe-Saltpeter equation (2.2). Such a
theory is of paramount importance for physical situations where anisotropic
scattering and depolarization effects cannot be neglected.

ACKNOWLEDGMENTS. Research supported in part by the Army Research Office
under contract No. DAAG 29-79-C-0085 and the Office of Naval Reseqrch under
contract No. N00014-76-C-0056.

APPENDIX. Consider the case of Born approximation valid for single
particle scattering together with the simplification

f dr'[cCr(') - 1] exp{ik(i - o) • ') f dr'[e r(') - 1] (A-l)
V V

s s

In this expression, V denotes the volume of the scatterer, e Cr) is the
s r

relative permittivity of the scatterer, and i, o are respectively unit
vectors along the incident and scattered directions. In this case, the

tensor-valued quantity <<g a>> obeys the equation

V x V x.)- k21] <<g a>> - k2 E 6(r - r )I , (A-2)
--a --a
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where

= ' + i " - <<f dr'[s (r') - 1]> (A-3)
v
s

and I is the unit tensor (dyadic).

Let

a() = xVr x (.) - k2 (l + p(r))I] (A-4)

Then, the Dyson equation (2.1) reduces to

Ma <Ea> = k2 <drk < a >k <Ek> B'(r , r) (A-5a)

Ma <<rCa>> = k2 C 6(ra - rPI

+ k2 c f dr M <<G a - <<G.m>> B'(r, r m) (A-5b)

The Bethe-Saltpeter equation (2.2) simplifies to

Ma <Ea E b*> <Ea E> Mb *

- k1 2 f dr. <<Ga>> <Ej Eb*> B'(r a, rj)

k 2&* dr. <Ea EJ *>  «-G. b * - B' _r
2 -J (rjI -b

+ k1
2  f dr <Ea Ej*> <<G b *> > B'(r , r.)

1j __ --a

-k 2 :-* f dr. <<Gja>> <Ej Eb *> B'(r., rb )

+ k 2t <Ea Ea*> <<G b*>> - k 2* <<G a>> <Eb Eb*> (A-6)
1I - a 2 b -E

If macroscopic depolarization effects are neglected, that is, if the approxi-
mation VxVx(.) V[V • (-)I - V21 = V21 can be justified, both equations

(A-5) and (A-6) reduce to scalar relationships.
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ABSTRACT

Multilayer dielectric structures are analyzed to determine the
optical waveguiding properties of the surface and leaky waves that
can be supported by such structures. Each layer in these structures
is assumed to have a uniform dielectric constant that may include an
absorption term. Any finite number of layers can be treated by this
analysis. The method of transmission line theory is applied to this
problem in order to keep the formulation both tractable and general
enough to include an arbitrary distribution of piecewise uniform
dielectric cohstants in the multilayer structure. The resulting
equations are placed into a simple form that is convenient for
effective computer programming. A computer program based on these
equations is developed and used to investigate optical waveguiding
in representative multilayer structures.
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INTRODUCTION

The simplest version of an optical waveguide is a planar
structure with an uniform dielectric constant (ref 1). For an
electromagnetic wave to be guided in this structure, the dielectric
constant must be larger than that of the adjacent media. The guided
wave will then propagate in a zig-zag fashion within this structure
undergoing total internal reflection at each interface.

There are two mair problems with this type of optical waveguide.
The first arises from surface and interfacial irregularities that
scatter light out of the waveguiding region. This scattering can
lead to large propagational losses and to poor signal/noise
characteristics. The second is lack of phase coherence for modes of
different order. This difficulty limits the use of such structures
in multimode propagation and reduces the information content that can
be transferred. Similar problems have been encountered with optical
fibers used in communicatior systems and have led to the development
of Graded Index (GRIN) or Self-Focusing (SELFOC) fibers (ref 2). The
refractive index of these fibers is no longer uniform but varies
according to a parabolic profile. Due to this index variation, light
rays in the fiber are contained in a sinusoidal envelope. Since the
light ray never touches the interface, scattering losses from surface
irregularities are drastically reduced. Also, the index profile is
adjusted to maintain phase coherence for a wide range of propagating
modes.

While such advances have been made in the fabrication of
cylindrical optical fibers, controlled index profiling has not as yet
been achieved in planar optical waveguides. The reason for this lies
in the considerable difficulty of introducing impurity atoms in a
precise manner over a two dimensional region of several square
centimeters.

Molecular beam epitaxy (MBE) is a vacuum deposition processing
technique in which several different atoms or molecules can be
deposited producing a film with the same crystalline structure as the
substrate (epitaxial growth) (ref 3). MBE machines have been
available for over a decade but the quality of the deposited films has
often been erratic. Recent progress in vacuum technology has allowed
the fabrication of high quality films in a reproducible manner.

With modern MBE machines, it is also possible to grow multilayer
planar structuren in which the optical or electronic doping in
individual layers can be accurately specified. Dopant profiling of
this type can lead to novel electro-optical devices for use in
integrated optics and microelectronics. To effectively utilize the
advantages of multilayer structures for guided wave applications, it
is necessary to be able to determine the optical waveguiding charac-
teristics of such structures. In this report an analysis of multi-
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layer waveguiding structures is performed.

The scattering and guiding of electromagnetic waves by planar
multilayer dielectric structures is a well known classical boundary-
value problem in electromagnetics (refs 4 & 5). The formulation of
such a problem is straightforward, but its complexity increases
drastically with increasing number of layers. For a structure with a
large number of layers, the analysis requires a special technique
that will keep the complex problem tractatle. In this work, the
method of equivalent network (transmission-line) is applied together
with the concept of the input impedance to the electromagnetic
boundary-value problem. Such a network approach makes the
formulation of the problem simple and particularly effective for
developing computer programs that are needed for theoretical
understanding as well as verification of experimental results in
laboratories.

In principle, tne planar multilayer dielectric structure can be
formulated as an electromagnetic boundary-value problem for any
structure parameters. However, for numerical analyses using a
computer, such as the search for dispersion roots, an analytic
solution often has to be put into different forms for different
possible situations that may arise in a complex structure; otherwise,
the numerical analyses may not always converge. Therefore, an
essential part of this work is to develop a computer program that
will automatically search for a suitable form of the analytic
solution as the situation demands. Fortunately, the equivalent-
network and input-impedance approach is versatile enough to permit an
automatic search routine that ensures the convergence of the
numerical analyses.

FORMULATION OF MULTILAYER DIELECTRIC STRUCTURE

A multilayer dielectric structure consisting of N uniform layers
is shown in fig. 1. The dielectric constant and the thickness of the
i-th layer form the top are Ei and ti. Such a multilayer structure
is placed on top a large substrate. The upper space above the
structure may be a superstrate or simply air and its dielectric
constant is denoted by Ea which may take any arbitrary value for a
given material. Without the loss of generality, the substrate and
the air region are assumed to be infinite in extent. If the uniform
substrate has a finite chickness, for example, the substrate may then
be considered as another layer below which is the unbounded air
region, and the formulation to be presented below will still hold.

Equivalent Network for Multilayer Dielectric Structure

For the coordinate system chosen in fig. 1, the dielectric
constant of the entire space is uniform in the xy-plane and varies
only in the z-direction. For such a structure, we may consider the
Transverse Electric (TE) and Transverse Magnetic (TM) modes
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separately. If the electromagnetic fields are invariant along the y
direction, we have, for each uniform region of dielectric constant
Ei, the field representations:

(i)
Ey (x,z) = Vi(z) exp(-jkxx) (1)

(i)
Hx (x,z) = Ii(z) exp(-jkxx) (2)

(i)
Hz (x,z) -kx Vi(z)exp(-jkxx) (3)

koZo
for the TE modes and

(i)
Hy (x,z) = Ii(z) exp(-jkxx) (4)

(i)
Ex (x,z) = Vi(z) exp (-jkxx) (5)

(i)
Ez (x,z) = -kxZo Ii(z) exp (-jkxx) (6)

for the TM modes. Here Vi(z) and Ii(z) are two unknown functions to
be determined by substituting each of the two sets of field
representations into Maxwell's equations and Zo is the characteristic
impedance of free space. In doing so, we obtain the transmission
line equation, for the i-th layer (Reference 6):

d Vi(z) = -jKi Zi Ii(z) (7)

d I i (z) = - jKi YiVi(z) (8)

Ki = (k2Ei - k2 ) (9)
0 X

= koo (TE) (10)
zi 1(i-

= KiZo (TM)

where Vi for the electric field and Ii for the magnetic field are
interpreted as the transmission line voltage and current,
respectively; Ki is the characteristic propagation constant; Zi is
the characteristic impedance; and, Yi is the characteristic
admittance. The form of transmission line equations remains the same
for any constituent layer, but the transmission line parameters
depend on the dielectric constant of the layer Ei and on the
parameters of the incident wave, ko and kx, as described by Eqs 9 and
10.
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The boundary conditions at an interface between two media of
different dielectric material require tha: the tangential field
components be continuous across the interface. At the interface at
z - zi between the i-th and (i+l)st media, we must have, for the
TE-mode:

(i) (i+l)
By (xZi) = Ey(Xi) (11)

(i) (i+l)
HX (x,i) = Hx(Xi) (12)

Using eqs. (1) and (2), the last two equations result in:

Vi(zi) = Vi+l(Zi) (13)

Ii(zi) a Ii+l(Zi) (14)

which states the continuity of both transmission-line voltage and
current at the junction representing the interface. This is true at
every interface boundary. An equivalent network consisting of trans-
mission line sections for the multilayer structure shown in fig. l(a)
can be given in fig. l(b). It can be easily shown by the same
procedure that the same equivalent network also holds for the TM
mode, but the characteristic impedance of the transmission lines has
to be modified according to eq 10.

Impedance Transformation of Transmission Line Section

The multilayer structure or the cascaded transmission line
system, shown in fig. 1, may be analyzed by many different methods.
The two most commonly employed ones are the transfer-matrix method
and the impedance-transformation method (ref 7). Each method is
applied to the terminal voltages and currents at the junctions. It
should be noted that a junction can be either a natural one existing
in the system or an artificial one created for the convenience of an
analysis. The transfer-matrix method is useful in some situations,
such as a system with fixed parameters. For the present problem of
scattering and guiding of waves by a multilayer structure we are
interested in the effect of changes in structure parameters.
Therefore the transfer-mdtrix method is not suitable here. On the
other hand, the impedance-transformation method is relatively simple
and easy for numerical analyses. We shall employ exclusively the
method of impedan.e transformation in this work.

A transmission-line of known propagation constant, K, and
characteristic impedance, Z, is shown in fig. 2; it has a finite
length t and is terminated by an output impedance, Zout. The
transmission-line voltage and current can be written as a super-
position of a forward and backward traveling wave:
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V(z) Z(b exp(jKz) + a exp(-jKz) (15)

I(z) a a exp(-jKz) - b exp(+jKz) (16)

where a and b are arbitrary constants. At the output end, z=t, the
boundary condition is:

V(t) = Zouti(t) (17)

Substituting eqs 15 and 16 into eq 17, we obtain:

b = R exp(-j2Kt) a (18)

where R is the reflection coefficient at z = t and is defined by:

R - (Zout - Z)/(Zout + Z) (19)

Finally, setting z = o i., eqs 15 and 16, taking the ratio of V(0) and
1(0), and making use of eqs 18 and 19, we obtain:

Zin = V(O)/I(O) = Z (Zout +jZtanKt)/(Z + jZout tanKt) (20)

which defines the impedance transformation between the input and
output terminals of the transmission line section. This transforma-
tion formula will be used as a building block in the analysis of the
cascaded transmission line system given in the next section.

GUIDANCE OF SURFACE AN.) LEAKY WAVES

Since the substrate region in fig. 1 is assumed to be semi-
infinite in extent, the transmission line representing this region is
likewise semi-infinite in length. The input impedance looking
downward in fig. 1 is then given by the characteristic impedance of a
semi-infinite transmission line:

(N+I)
Zin =Z (21)

Such an imput impedance is actually the output impedance of the N-th
section and the input impedance of the N-th section can be determined
by using the transforma..ion formula in eq 20. The input impedance
then becomes the output impedance of the preceding (N-l)st section
and the process may be repeated until the sections are exhausted.
More specificall", the impedance transformation for each section can
be given by:

(i) (i) (i)
Zin Zi(Zout+jZitan Kti)/(Zi+jZouttan Kiti) (22)

(M) (i+l)
Zout Zin (22a)
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ti = zi - zi-i (22b)

for any i=l,2,3,...,N. Thus, the input impedance at every junction
may be assumed to be known.

Consider now a plane wave of amplitude a incident from the air
region onto a multilayer structure, as shown in fig. 3(a). The angle
of incidence is e and the reflected wave amplitude is b. In this
case, we have:

kx = ko (Ea)dsine (23)

With a given kx, the transmission parameters can be determined by eqs
9 and 10. An equivalent network for the scattering of a plane wave
by the multilayer structure is shown in fig. 3(b), with the incident
and reflected wave amplitudes indicated. The voltage and current in
the air region are given by:

Va(z) = Za(a exp(-jKaz) + b exp(+jKaz)) (24)

Ia(z) = a exp(-jKaz) - b exp(+jKaz) (25)

At z=0, the voltage and current must satisfy the relation:

Va(O) = Z(l) Ia(O) (26)
in

Substituting eqs 24 and 25 into eq 26, we obtain, after some
manipulations:

(1) (1)
(Zin + Za)b = (Zin - Za)a (27)

In general, we then obtain:

b - Ral a (28)

where Ral is the reflection coefficient of the multilayer structure
and is defined by:

(1) (1
Ral =(Zin - Za)/(Zin + Za) (29)

In the absence of an incident wave (a=o), and in order for eq 27 to
have a non-trivial solution (b A o), we must have:

(1)
Zin + Za f 0 (30)

which defines the dispersion relation for surface and leaky waves
guided by the multilayer structure. Thin dispersion relation is a
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transcendental equation whose roots can be determined only by
numerical methods, such as the Newton iteration method which has been
successfully tested for the problem under investigation.

SAMPLE CALCULATIONS

Optical waveguides having an exponential variation in the
dielectric function form a common class of inhomogeneous waveguiding
structures. These waveguides can be produced either through in-
diffusion of foreign atoms into an optically homogeneous medium, or by
out-diffusion of certain atoms originally located in the medium. In
either case, the variation in the dielectric function can be
described by:

E(z) = Ro  for z< 0
(31)

E(z) = El + E2 exp(-z/d) for z> 0

where E0 is the dielectric constant of the superstrate region; El
characterizes the substrate prior to diffusion; E2 is the maximum
change due to diffusion; and, d is the transition length. Upon
substituting eq 31 into Maxwell's equations, it is possible to obtain
a closed form solution, in terms of Bessel functions, for the
propagating waves. The allowed values for the propagation constants
are then determined by finding the roots of these functions when the
boundary conditions are satisfied at z = 0. This method has been
utilized to analyze waveguides fabricated by in-diffusion of Se into
CdS substrates (ref 8). In that analysis, the waveguiding region was
specified by the following parameters: E0 = 1, El = 6.1, E2 = 0.3,
d = 2.5 microns, and the wavelength is 0.633 microns. Table 1 lists
the propagation constants for the eight TE modes that can be
supported by this waveguide.

In order to apply the multilayer formalism, developed in the
previous two sections, to this type of waveguide, it is necessary to
replace the continuous profile by a set of approximating steps.
Table 2 indicates the dielectric constant and the thickness of each
layer in the ten layer approximation to the exponential profile.
Here the substrate region is labeled "A" and the air region is "S".
When these parameters are used as inputs to the computer program, the
TE propagation constancs for the multilayer profile can be
calculated. The values resulting from this calculation are shown in
table 1 and are in very good agreement with the numbers determined by
the continuous 'xponential profile solution. Sin- this latter
method also involves numerical root finding proceures, it is
somewhat difficult to state which method is more accurate. Probably
the multilayer approach is more economical to use as it does not
involve the computation of Bessel functions at each stage.

64



CONCLUSIONS

The mathematical problem of determining the propagating modes ina multilayer dielectric waveguiding structure has been analyzed in
this investigation. A solution to the problem has been derived based
upon the method of equivalent network formulation used with the
concept of input impedance matching. The analytical solution has
been used to generate a computer program to calculate both the TE and
the TH propagation constants in multilayer structures. The program
can treat an arbitrary number of layers each characterized by a
uniform dielectric constant that may inc'.ude losses. Any piecewise
continuous dielectric profile can, in pr~nciple, be represented by a
structure consisting of N such layers, where N is an integer., As N
becomes very large, the solution presented here approaches the WKB
approximation to the electromagnetic boundary value problem. In its
current form, the computer program has been shown to yield very
accurate values for the propagation constants for a waveguide having
an exponential dielectric profile. This program can be easily
extended to calculate the field distribution within each dielectric
layer. In this manner, complicated dielectric waveguiding structures
can be analyzed to predict propagation constants for each polariza-
tion along with their associated model patterns.
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Table 1. Propagation constants for exponlential prc'-I1e

TR mode number Continuous profile multilayer profile

0 2.508 2.508

1 2.495 2.495

2 2.486 2.487

3 2.480 2.480

4 2.476 2.476

5 2.473 2.473

6 2.471 2.471

7 2.470 2.470
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Table 2. Multilayer input data

EA = 6.10000 -0.00000

ES = 1.0 -0.0000

WAVELENGTH = 0.633

E 1 = 6.103 9 -0.00000 T 1 = 2.40000

E 2 = 6.10962 -0.00000 T 2 = 2.00000

E 3 = 6.12141 -0.00000 T 3 = 2.00000

E 4 = 6.14398 -0.00000 T 4 = 1.60000

E 5 = 6.17398 -0.00000 T 5 = 1.00000

E 6 = 6.21036 -0.00000 T 6 = 1.00000

E 7 = 6.25819 -0.00000 T 7 = 0.80000

E 8 = 6.30930 -0.00000 T 8 = 0.60000

E 9 = 6.35564 -0.00000 T 9 = 0.40000

ElO = 6.40000 -0.00000 T10 = 0.20000
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CALCULATION OF ADVECTIVE MASS TRANSPORT IN HETEROGENEOUS MEDIA

O Charles J. Daly
Earth Sciences Branch

Cold Regions Research and Engineering Laboratory
Hanover, New Hampshire 03755

ABSTRACT. A coupled analytical/numerical procedure for prediction of
0solute transport in heterogeneous media is described. The procedure con-

sists of an analytic solution of the hydraulic equations, followed by a
numerical solution for so'ute transport using the method of characteris-

Stics. The characteristics are determined by fourth-order Runge-Kutta and
s predictor-corrector algorithms. Accuracy of solute transport calculation

is enhanced by the fact that fluid velocity can be directly obtained at a
Ariori undetermined points in the flow field.

7 The solute transport process is considered to be entirely advective,
neglecting the effects of mechanical dispersion and molecular diffusion.
Evidence is presented to dminstrate that purely advective processes in
both heterogeneous and hcmogeneous media can produce large "apparent dis-
persion." Such dispersion is shown to be easily capable of overwhelming
any reasonable estimates of dispersion or diffusion based upon laboratory
analyses of homogeneous media. For groundwater contamination problems, it
is concluded that precise definition of the spatial variability of hydrau-
lic properties is crucial to the accurate determination of the trajectory
of contaminated waters.

BACKGROUND. At the scale of individual grains, the transport of a
conservative solute through a porous medium is clearly an advective
phenomenon. Solute particles are wafted along by fluid as it flows over
tortuous routes in the general direction of the potential gradient. Close
observation of the movement of initially adjacent solute particles would
reveal their tendency to become separated. Contributing to the separation
one would observe: (a) random bifurcation of pore channels, (b) a large
range of fluid velocities across individual pores, and (c) differences of
fluid velocity from one pore to another. To a very minor extent, pore
scale advection is supplemented by molecular diffusion.

For a fluid of nonuniform concentration which saturates a porous
medium, the separation of solute particles amounts to mixing, resulting in
changes of local solute concentration. Buyevich et al. (1969) noted that
the pore scale advective aixing process is very much like the mixing re-
Eulting from ordinary fluid turbulence.

The usual m.erial continuum approach to porous media modeling defines
solute transport in terms of macroscale mass fluxes (Bachmat and Bear,
1964). Although the entire process is fundamentally advective at the pore
scale, the macroscale description of advection can represent only an aver-
age transport, strictly in the direction of the potential gradient. The
pore scale mechanisms listed above as (a) through (c) cannot be accounted
for by macroscale advection alone.

•ONN am MIM
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Dispersion is an additional macroscale solute flux whose purpose is to
account for the pore scale mechanisms which cause mixing. Dispersive flux
is assumed to be proportional to concentration gradient.

Harleman et al. (1963), Klotz and Moser (1974), and others have con-
ducted laboratory experiments on columns of homogeneous media to determine
the relative magnitudes of macroscale advection and dispersion. Their re-
suilts are presented as a correlation between the magnitude of dispersion,
the potential gradient, and the physical properties of fluid and media.

Many investigatorb (e.g. Pinder, 1973; Konikow and Bredehoeft, 1974)
have applied macroscale advection-dispersion-models to field problems.
Calibration of these models generally leads to the assumption of dispersive
fluxes which are orders of magnitude greater than would be expected on the
basis of lab analyses of porous material samples. Gelhar et al. (1979)
reiterate the conclusion that this discrepancy is related to local hetero-
geneity of porous medium hydraulic properties. The experimental results of
Skibitski and Robinson (1963) substantiate this by illustrating the
dominant effect of heterogeneity on the transport of dye in sand flumes.

THEORY. The aim of this paper is to demonstrate a coupled analyti-
cal/numerical technique for predicting the transport of conservative
solutes in heterogeneous media. The approach presumes that genuine disper-
sion is negligible compared to true macroscale advection when that advec-
tion fully accounts for heterogeneity and nonuniform flow.

In order to accurately determine the effect of heterogeneity on macro-

scale advection, an analytic solution for hydraulic potential is obtained.
Application of Darcy's law yields an analytic expression for average +
linear velocity which can be evaluated at a priori unspecified points x.
As part of the technique, medium properties ar accounted for as
known (or interpolated) explicit functions of x. Given an accurate de-
scription of flow field, streamlines are calculated by applying the method
of characteristics. Advection is determined from the rates of flow along
the streamlines.

Example problems are used to demonstrate the fact that genuine disper-
sion can be easily overwhelmed by the effects of heterogeneity and non-
uniform flow. In each example, flow is assumed steady and horizontal. The
analyses apply to confined aquifers and also to phreatic aquifers where the
Dupuit assumptions and linvar approximation are valid.

Advection-dispersiou equation (numerical solution). The control
volume approach can be used to derive the advection-dispersion equation
(Daly, 1979):

3 - v . (DVc) + vc -+ q (C-C) (1)
at P p

where:
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S- effective porosity, dimensionless;
C - mass fraction of the pore fluid; the ratio of the mass of solute

in a given volume to the total mass of fluid in that volume,
dimensionless;

D - dispersion coefficient tensor, L2/T;

+
v = specific discharge,L/T;

- contaminant mass source/sink strength representing the exchange

of mass betwcen fluid and porous matrix, M/L3T;

p - tluid density, M/L3;

q - recharged fluid mass strength, M/L3T > 0;

C - mass fraction of recharged fluid, dimensionless.

Considering (1), it is clear that the effect of fluid withdrawals is not
felt directly through the :ems on the PRS of the equation. However, with-
drawals do affect the transport by modifying the flow field
(represented in (1) by V).

If dispersion is neglected compared to macroscale advection, (1) can
be written, for the simple case of no source/sink terms, as:

C+ vac + V 0 (2)
at x dx y ay

Application of the method of characteristics transforms (2) into the equi-
valent system of ordinary differential equations:

dx Vxd- - T - f(x,y,t) (3)

dt *
dY--I S g(x,yt) (4)
dt

d o (5)
dt

Equations (3) and (4) are used to determine the trajectories (also called
the characteristic lines) af fluid particles in the flow field. Equation
(5) is simply a statement of the fact that in the absence of sources or
sinks the concentration of fluid particles remains constant. It is impor-
tant to note that (3), (4), and (5) are not independent. Equation (5) is
only valid along the trajectories defined by the joint solution of (3) and
(4).

Determination of the trajectories of fluid particles is done by
numerically solving the linked system of (3) and (4). A fourth order
Runge-Kutta technique is used to start the procedure which can be continued
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by a more efficient predictor-corrector scheme. The numerical solution
method starts at a point (xo,yo ) at time zero. The concentration is
defined at 411 such points by an initial condition. Using a time step At,
successive points (xn, Yn) along the trajectory of the particle which
began at point (xo, yo) are obtained. The Runge-Kutta algorithm for
accomplishing this is:

Xn+1 - xn + (a I + 2a2 + 2a3 + a4) (6)

I

yn+ - Yn + g (b, + 2b2 +kb 3 + b4 ) (7)

where:

a 1 - At f(xnYngtn) (8)

b- - At g(xYn t n )  (9)

a2 - At f(xn + a,/2, yn + b1 /2, tn + At/2) (10)

b 2 - At g(xn + a,/2, yn + b1/2, tn + At/2) (11)

a 3 - At f(xn + a2 /2, Yn + b2/2, tn + At/2) %12)

b 3 - At g(x n + a2/2, ya + b 2/2, + At/2) (13)

a4 - f(Xn + a3 , Yn + b 3, tn + At) (14)

b 4 - At g(x n + a 3, Yn + b3, tn+ At), (15)

and f and g are defined in Equations (3) and (4).

Runge-Kutta algorithms belong to the set of self-starting numerical
solution methods. Self-starting means that the determination of all suc-
cessive points (xn, Yn) iequires only the starting point (xo, yo).
IA other words, calculation of xn and Yn depends only on the known
values XnI and Yn-1 The set of non self-starting methods require the
values (xn, yn) to be given at more than one point along the trajec-
tory. For example, a fourth order predictor-corrector algorithm called
Milne's method requires the values xo, Xl, x2, x 3 , Yo, Y1, Y2, Y3 to
calculate successive values of xn and Yn,
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Beside the question of starting values,the efficiency of the calcula-
tion procedure is an important factor in selecting a numerical method. It
turns out that Milne's algorithm is significantly more efficient than the
Runge-Kutta method, although both are fourth-oreer accurate. One numerical
procedure proposed in this paper is that which takes advantage of the
Runge-Kutta self-starting feature and the efficiency of Milne's method.
Given a starting point (xo, yo), the Runge-Kutta procedure is used to
obtain (xj, yj), (x2 , Y2), (x3, Y3). At that stage the necessary starting
values are available for Milne's method which is then used to generate suc-
ceeding points.

Non self-starting methods typically assume constant At, whereas self-
starting methods allow for change of At at each time step. For problems in
which the frequent change of At is desirable, exclusive use of a self-
starting method, such as the Runge-Kutta algorithm, is advised.

Milne's predictor-corrector method consists of two steps. First, pre-
dicted estimates of Xn+i and yn+l are calculated. Let these be denoted

+ 1 and y*n+l. Second, Lhe predicted values are corrected to obtain
the final values xn+ 1 and yn+l at the end of a time step. The
algorithm is

X 1  Xn + [2x'- x'n_l + 2x'2] (16)

Y*+ Yn - +  A-t [2y' Yn -1l 2y-2]' (17)

then:

x x +At- x*4+4x'+x' ] (18)
n+l n-i 3 [ 1+ n-1

SYn- + A [Y*I + 4y' + Yn~l] (19)

where:

X' - f(xn, tn) (20)
n n' n n

n - g(xn' Y.' tn) (21)

Consideration of the %unge-Kutta and the Milne algorithms shows that
Milne's method requires only two evaluations of f and g per time step,
whereas Runge-Kutta requires four. This makes Milne's method more ef-
ficient.

Steady flow between a source/sink pair. Consider the steady flow of
fluid between a line source and a line sink of equal strength Q,
separated by a distance - a. Let the source/sink pair be located in a
homogeneous, isotropic medium of infinite extent, and saturated thickness
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b. Suppose that at time zero the concentration of solute at the source is
changed from zero to Co.

The well-knovn time dependent solution for the concentration of fluid
recovered at the sink depends on the travel time of fluid particles (e.g.
Charbeneau and Street, 1979). Travel time t is expressed as a function of
6, the direction of travel of a particle as it issues from the source. If
the angle B is measured from a line between the source and sink, then:

t 2 1
-Q uin6 [1 - 6 cnte] 8 > 0 (22)

where * is the effective porosity. For 6 - 0, the minimal travel time tm

is:

t a s W3 (23)
m 3Q"

At time t > tm the relative concentration of recovered fluid is:

C 1
0 8(t) (24)

0

where the function e(t) is defined by (22).

The analytical solution to the sour -e/sink problem was compared with a
numerical solution obtained via the method of characteristics and the
Runge-Kutta algorithm. Variables were assigned the values: a - 500 m, Qt=
10000 m 3/days, b - 50 m, 0 - 0.2. The numerical calculation began with At
- 0.05 day; subsequent values of At were selected so as to allow fluid
particles to travel about 10 meters per time step. Both analytical and
numerical results are plotted in Figure 1; note that the two solutions
practically coincide.

Since the concentration of fluid recovered at the sink varies with
time, the transport may be viewed as a mixing process. In fact, this
mixing or "apparent dispersion" is obviously just the result of nonuniform
flow. The source/sink example leads to the conclusion that unrepresented
nonuniform flow may result in considerable unexplained "dispersion."

Transport in heterogeneous media. Consider the transport of a conser-
vative solute in a two dimensional steady flow field. The flow domain is
assumed to be rectangular, L by H, having the distributions of transmis-
sivity and effective porosity as shown in Figures 2 and 3.

Solution of the transport problem begins with the determination of
flow field, which in turn begins with finding the hydraulic potential.
Using the linearized Boussinesq equation, Daly and Morel-Seytoux (1981)
determined an analytic solution to this problem subject to the boundary
conditions on the potential h:

h(O,y) - 0 h(L,y) X
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Figure 1. Relative concentration of fluid at the producing well of a
source-sink pair.
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7

ah i,)-ah.
y ( x,) 0 (25)

Their solution is:

) 2 xXh(x,y) " - .A(n,0) sin -r + -

LI n-1

M N
I I A(n,m) sin cos (26)m-I n-I L H

where the Fourier coefficients A, dependent on medium heterogeneity, are
found by the application of an integral transform method.

The specific discharge (and average linear velocity) associated with
the potential distribution of (26) is obtained from Darcy's law. Equation
(26) is easily differentiated to yield the hydraulic gradient. For the
problem presented here: L - 2500 m, H - 1800 a, X - 10 a, and saturated
thickness is assumed constant and equal to 50 a. Figure 4 is a vector dia-
gram of specific discharge.

The trajectories of fluid particles (located initially along the right
hand vertical edge of Figure 4) were calculated by the Runge-Kutta, predic-
tor-corrector method. A constant time interval of 100 days was used. The
calculated trajectories define the streamlines shown in Figure 5; triangles
are used to locate particles at 100-day intervals.

The movement of a sharp concentration front through the medium is
shown in Figure 6. It is assumed that at time zero the concentration of
fluid along the right hand boundary was instantaneously changed from zero
to Co. In the figure, the front is plotted at 200-day intervals. The
movement of any particular point on the front is found by following that
point along its associateu streamline.

Consider the fluid which exits the porout; medium at the left hand side
of Figure 4. The average concentration of that fluid can be determined by
calculating the time of breakthrough of many individual stream tubes. The
ratio of the outflow produced by the tubes which have broken through to the
total outflow can be obtained at any time. That ratio gives the relative
concentration of the fluid flowing out of the medium. Using many more
stroam tubes than are shown in Figure 5, the calculation procedure was per-
f-rmed. The result is plotted as the solid line in Figure 7 (the "observ-
ed" breakthrough curve).

Using dispersion to account for the shape of the breakthrough curve.
Suppose that the existing heterogeneity of the preceding problem is
unknown. Suppose also that an experiment is conducted to determine a
breakthrough curve; the result is the "observed" breakthough curve of
Figure 7.
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If the porous medium were assumed homogeneous, all streamlines in

Figure 5 would be parallel to the x axis. Flow would be steady and uniform

and the problem could be considered one dimensional. A solution to the one

dimensional advection-dispersion equation for steady flow has been obtained

by Ogata and Banks (1961). The differential equation is:

3- I + u -K 0 u> 0 (27)
at ix 2 x
subject to:

C(Ot) - Co; C(-,t) - 0 (28)

and the initial condition:

C(xO) - 0 (29)

where u - average linear velocity; D' - D/f. After a change of origin, the

solution for the breakthrough curve is: at x - 0:

uL
C I er c L-ut + 7 eric L+ut (30)
C 2

For the problem considered here L - 2500 meters and

U 0.6745 a/day (31)

Several estimates of the coefficient D' can be made. The resulting break-

through curves are plotted in Figure 7 for the estimates D' - 50 and 100

m2/day. Note that these two curves give an approximate fit to the observed

bXeakthrough curve.

In a series of experiments dealing with one dimensional dispersion,
Harleman et al. (1963) correlated dispersion coefficient with flow and

media properties. A variety of unconsolidated materials were used. The
flow and transport problem were such that the analysis of Ogata and Banks

(1961) could be applied. Determining the breakthrough curve and the aver-
age linear velocity gave Harleman et al. the ability to estimate D' from
Equation (30). Their correlation formula predicts for sand grains:

S.90 (Rd .2 (32)

V 0.90 (R50)

w* ere: v is the kinemat.c viscosity [L2 /T],

- Juld 5 0 (33)
d150 v

and d 50 is the 50 grain size of the porous material.

If the shape of the observed breakthrough curve of Figure 7 is assumed

to be the result of dispersion, (32) can be used to estimate d5 0 for the
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porous material. With D' - 100 m2/day, d50 - 49.32 i; f~r D' - 50 m2/day,
d50 - 27.68 m.

CONCLUSIONS. The above results dramatically show that: (a) even
modest heterogeneity of porous media properties cannot be properly ac-
counted for by dispersion, and (b) genuine dispersion is easily overwhelmed
by the effects of heterogeneity.

ACKNOWLEDGMENT. The author wishes to thank the U.S. Army Toxic and
Hazardous Materials agency (USATHAMA) for funding the report of these re-
sults through project P.38'.05.0056.

* 88" I



REFERENCES

Bachmat, Y., and J. Bear, 1964. The general equations of hydrodynamic
dispersion in homogeneous, isotropic porous mediums, Journal of
Geophysical Research, vol. 69, no. 12, pp. 2561-2567.

Buyevich, Y.A., A.I. Loenov, and V.M. Safrai, 1969. Variations in
filtration velocity due to random large scale fluctuations of
porosity, Journal of Fluid Mechanics, vol. 37, pp. 371-381.

Charbeneau, R.J., and K.L. Street, 1979. Modeling groundwater flow fields
containing point singularities: streamlines, travel times, and
breakthrough curves, Water kesources Research, vol. 15, no. 6, pp.
1445-1450.

Daly, C.J.,1979. Analytical/numerical methods for groundwater flow and
quality problems, doctoral dissertation, Colorado State University,
Vort Collins, 167 pp.

Daly, C.J., and H.J. Morel-Seytoux, 1981. Ar integral transform method for
the linearized Boussinesq groundwater flow equation, Water Resources
Research, vol. 17, no. 4, pp. 875-884.

Gelhar, L.W., A.L. Gutjahr, and R.L.Naff, 1979. Stochastic analysis of
macrodispersion in a stratified aquifer, Water Resources Research,
vol. 15, no. 6, pp. 1387-1397.

Harleman, D.R.F., P.F. Mehlhorn, and R.R. Rumer, 1963. Dispersion-
permeability correlation in porous media, Journal of the Hydraulics
Division, ASCE, vol. 89, no. HY2, pp. 67-85.

Klotz, D., and H. Moser, 1974. Hydrodynamic dispersion as aquifer
characteristic, Isotope Techniques in Groundwater Hydrology, vol. 2,
International Atomic Energy Commission, pp. 341-354.

Konikow, L.F. and J.D. Bredehoeft, 1974. Modeling flow and chemical
quality changes in an irrigated stream-aquifer system, Water Resources
Research, vol. 10, no. 3, pp. 546-562.

Ogata, A., and R.B. Banks, 1961. A solution of the differential equation of
longitudinal dispersion in porous media, U.S. Geological Survey
Professional Paper 411-A.

Pinder, G.F., 1973. A Galerkin finite element simulation of groundwater
contaninatioi on Long Island, New York, Water Resources Research,
vol. 9, no. 6, pp. 1657-1669.

Skibitaki, H.E., and G.M. Robinson, 1963. Dispersion in groundwater
flowing through heterogeneous materials, U.S. Geological Survey
Professional Paper 386-B.

89

-''



AN ELECTRIC THEORY OF OSMOSIS
FOR DILUTE SALINE SOLUTIONS

DONALD L. BUTTZ

ANALYSIS DIVISION

ARMY MATERIEL TEST AND EVALUATION DIRECTORATE

US ARMY WHITE SANDS MISSILE RANGE,

NEW MEXICO 88002

ABSTRACT

Osmosis can be redefined in electrical terms and can be explained by an

electrostatic model. A formula for the variation of the dielectric
coefficient with temperature is developed for water. A relationship for the
osmotic pressures of dilute saline solutions is put forth as a theoretical
result, given the volume, temperature, number of moles, and average inter-
ionic distance. This theory assumes that the interionic distances are
sufficiently large such that the osmotic pressure is proportional to the

concentration at constant temperature. This paper describes osmosis through
physical electrostatic theory as opposed to the usual chemical diffusion

theory. A generalized mathematical model is developed which has application
to osmosis for dilute'aaline solution.
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CHAPTER I

Introduction

Osmosis is the flow of a solvent through a semi-permeable

membrane. A semi-permeable membrane is an ideal membrane

which will permit the passagc of the solvent but not of dissolv-

ed substance. There is a tendency for solutions separated by

sucha membrane to become equal in solute concentration; thus,

a solvent will flow from a more dilute to a more concentrated

solution and the solutions willtend to become equal in concen-

tration. Osmotic pressure is the pressure which must be ap -

plied to a solution in order toprevent the flow of solvent through

a semi-permeable membrane separating the solution and the

pure solvent. The osmotic pressure, temperature and volume

of a dilute solution of a non-electrolyte are connected by laws

exactly similar to the gas laws, but this investigation is res-

tricted to osmotic pressures produced bydilute salt solutions.

The'purpo3e of this study is to explain osmosis of a dil-

ute saline solutionusing an electrostatic model. Thus, osmosis

should be understood as an electrical phenomenon. Therefore.

anew definition ofosmosis seems to be in order.
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CHAPTER 11

Electric The,3ry 11-ackground (or O-inosis

Since thL- na~ture of the problcm is electrostatic, let

us state Maxwell's two postulates of electrostatics in dif-

ferential form:

VxE= 0 (2-Z)

WhereD is the electric displacement and E is the elec-

tric field strength. In free space, D is related to E, that

is,

D~~ E (2-3)

Le4t the potential ofthe electrostatic field be 0 E is rel-

atcd to 0 by the relatiun,

E = -V (2-4)

A liquid solvent has a dielectric coefficient, ke If the

medium is homogeneous and has a dielectric coefficients

then Dand E are related.by the equation.

D =kcoE(2-6)

and similarly for expression (2-2) we have.

V x keE = 0

The equations (2-2) and (Z-3) become
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V (keE) (2-7)
CO

V x (keE) 0 (2-8)

These relations hold provided that the solvent is in isotropic

dielectric fluid and ke is independent of the magnitude of

the electric field strength.

Applying the divergence theorem to (2-7) we have,

(ke E) . dS f-/7 dv (2-9)

and after rearrang,.:rnent we arrive at the relation:
Ci

2. (2-10)k-er4ffe 0 k e r2

Multiplying equation (2-10) bye , we have the coulornbic

force between charge e and c. ina dielectric medium.

That is,
e i e.

F =2 (2-11)
491 o ke r

The interaction energy between charges e i and ej in a dielec-

tric is,
ei ej

U = 2 (2-12)
4mcok e r

and analogously, the interaction energy between charges e.1
and e infree space is,

e i ej + ej (Z-13)
0 o 2 4ne o r

There are attractive and repulsive electrostatic forces

94

p.-



in (2-13). By analogy tothe well-known potential energy of

a pair of ions in an ionic crystal, we have the following

graph:

14
12 Repulsive energy
10
8
6
4
2
0
2 2 3 4 5 6 R in

4
6 Attractive Coulomb energy
8 Total

10 eat y Equilibrium Position

12
14

Figure I - Energy per ion
pair of an ionic crystal,
showing Madelung and repul-
sive contributions.

A salt is composed of ions formingan ionic crystal.

The main contribution tothe binding energy of an ionic

crystal is electrostatic and is called the Madelung energy.3

Let Uij bethe interaction energy between ions i and j.

Uij ei e (2-14)
4 TE0 rij

Let U1 be a sum of energy involving all interactions with

ion i.

Ui EU j (2-15)
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This sum includes all ions except i j. The total lattice

encrgy ofa cryttl is cemposCd of N ion pairs or ZN ions.

The equation giving the total lattice or crystal energy for the

formation o.& a mole of oppositely charged ions ib,4

UC S . Z.L (1 (Z16)
4 7ICo r 0

where, N o  Avogadro's number

A = Madelung constant

Z+ = Charge on Cation

Z- = Charge on anion

a = 'Electronic charge

n' = Empirical constant

r. = Nearest neighbor separation

For monovalent ions Z+ = Z- z I and n' is on the order

of 9. In this case equation (Z-16) gives an approximate

crystal lattice energy:

Uc 4 N r1

Thus, the chemical bond in the alkali halides is- assumed to

be strictly elrctrostatic. Also, we haveas a first order

approximation, assumed theions tobe point charges. The

positive and negative ions can be described by Coulomb's

Law. Note that a repulsive term operates to establisban

equilibrium separation distance %6 between positiVe and
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negative ions. The repulsive term is short range in its

effect.

0o r

Figure Z -Potential energy
versus ionic separation.

U

0 r
re

-Uc

Figure 3 - Uc is reduced in adielec-
tric and becornes-Uc.

Work must be done to separate the positive and negative

ions from each other. The arnountof energy required per

mole is called the lattice energy. As an example, the lattice

* energy of NaCl is 184 Kcallmole.5 Whena salt is dissolved

in a solvent. the eleatrostatic attraction between the ions to
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reduced bya factor of l/k e

In order that dissolution may take place, solute-solute

and solvent-solvent attractions must be overcome by

solute-solvent attraction. 6 Ionic solutes are soluble in polar

solvents such as water. Two classes of dielectrics exist, one

polar.and the other non-polar. The non-polar molecules are

the ones in which thc centers of the positive nuclei and the

electron cloud are coincident. Non-polar molecules are

usually symmetric, such as H2 , N2 . 02, etc. Polar

molecules do not have coincident centers7 Examples of

these are: H 20, NaCl, etc. Under the influence of an el-

ectric field, the charges of a non-polar molecule become dis-

placed. These non-polar molecules become polarized by the

field and we have what is called induced dipoles. The res-

toring force between charges equals the force produced by

the electric field. A dielectric consists of polar molecules.

which'have permanent dipoles and these dipoles are oriented

at random due to thermal agitation with noexternal field pre-

sent. Under the applied electric field, some orientation takes

place. The 5tronger the field, the greater the numberof di -

poles pointing in the direction of the field. If a salt is dis.-

solved inwater, there is a force of attraction which pulls

the water dipoles in the direction of the ions' electric field.
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This force can be expressed as:

F = E2  (2-18)F a"

x 23x

where a , is the polarizability.

The above shows that the force pulls the molecule in the di-

rection in which the magnitude of the field increases most

rapidly. The field of the ion va rie.; as I/ so that E

varies as 1/r4 taking the dcrivative with respect to x and

multiplying by a/2 the forcc of attraction varies inverse-

ly as the fifth pover of the distance and the potentialener-

9
gy invcrselyas the fourth power:

U- 1 e_ Z1 (2-19)

2 3 k1 T(4oTrEkc) r

A dipole is acted on not only bya force, but also by a

torque in an electric field, and this torque is proportional

to thc field strength rather than to its rate of change with

position. The potentialenergy associated with this torque

is,

U =-i. E cos 0 (2-20)

The electric field due to a dipole radially outward is: 1 0

Er= Z _P Cos 0- (2-21)
4v11% ker

The interacting force between an ion and a dipole in a

dielectric ke is:

F 2 ev cosO (2-22)
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The cos e represents a thermal average. To calculate

this average we use the Boltzrmann Distribution aw. The

relative prcobaiility of finding a molecule in an element of

solid angle df2 is proportional to exp (-U/kbT), where

U : - E cos 0. Therefore, the thermal average for cos 9

is as £ollows, 11 7 e-Ucos~d~ l

w h e r e 8 - ---1 a

khT

and dQ= Z -n sin a d a

after some manipulation, we find that

(4oo B> I (Z-Z4)
3 kbT

Applying equation (Z-Z4), equation (Z-ZZ) becomes,

F Zel , I I I-E
4n o ke r kbT

Recalling equation (2-10) and substituting into (Z-5) we have.

!F = e e

4rco ker 3 kbT 41nwoke

Simplifying, we get

E.
3 kbT (4re 0 k) -

and ".he ion-dipole interaction energy becomes.
zZ

U - (z-z7)

This equation is identical to equation (Z19). arrived at by
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two different approaches.

Equation ( -Z7) ruprccnts the intCr.lat LtLi ene rg between

one ion and o-c dipole. One would havo. to sum all the ion-

dipole intcrLctions for r , r;,ngingfroni one fun tothe ne.ir-

est ion and then take into accouant all theions in solution to

calculate the total ion-dipole interaction energy simply by

knowing the clectrstaticbiaiding ezicrgyl 'fore and after the

salt is dissolved and finding the difference. This difference

must be reduccd by a factor due to thermal agitation oppos-

ing complete allignment of the dipoles with the ion field. In-

cludingthis factor, a natenergy for doing worlk in attracting

the dipoles is determined. We have therefore excluded the

work done to orient the dipoles. The other portion of the

work does the actual pulling of the dipoles. From this in -

formation, we can calculate the osmotic pressure.

Calculations

Recall eqiation (2-17)

Uc - N.A cz (Z-Z8)
4 Tre o r o.

where. A= Madelung constant (NaCI structure
1.747565; CsCI structure = 1.76Z76)

N.= Avogadro's number 6.02Z3 x 1023

mole
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r = Interionic separation
- 19)

' = Charge = 1. 602 x 10 coulomb

Uc is the stc)redC .) LtLr;, t iie I)Jt '1tiiI etie rgv '.,'iore the

solvent is introduced. After the solvent is introduced, the

stored attractivuputcati;&l cnergy is les by a factor Ilke,

so that the diffcrnc_ is, these enaer ies is the" work done to

pull and orient the solvent in the lattice.13

U (1 - 1) Joules/mole (1-29)
ke

Given the numbe rof i nolqs of solute n oi the salt, we can

determine the total workdone on the solvent.

U = U c 0 _) . n (2-30)
k
e

The fraction of the total work done on the solvent goes into

atomic and orientation polarization.

<cos e>- 1 IE (2-31)
3 kbT

= dipole moment for HzO 4. 1 x 10 3 0

coul-m.

kb= 3oltzmann's Constant 1.39 x 10" 3

Joule/°K.

T - Z98 0 K or Z5°C.

Since we are considering a solute saline solution, assume

a reasonable ion separation of approximatvely 10 A 0 for a con-

centration of 1 molal 14 We can then proceed to calculate the
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approximate E field strength for dilute cases:

E c (2-3z)
4'7T e k . r

E 0. I4 x 10 Vi (2-33)

<Cos e ) -P = 6. 115 % 1o (2-34)
3 khT

This number is the fraictionwhich accounts for orient1-

tionpolarizaiionof the solvent, provided it hasa permanent

dipole ;is for the case of water.15

Ey multiplying this fraction times the total work done

on the solvent, we compute the work which tends to pull the

solvent toward the ionic "crystal".

UTCos 0) =-Uc (1-1 ). n hos e) (2-35)
ke

Thus we have excluded the work to orient the solvent

molecules.

Uc ( _) .n Cos 0> (2-36)
ke

By dividing this equation by the volume of the pure sol-

vent, we have determined anenergy density which is other -

wise the osmotic pressure

We = U(1-I_)-n <Cos OE)I
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III

U for NaCI is 180. 5 kcal/mole. By converting toc

new units, it is

Uc  = 7.46 S l0 jC)uI'/IIOIQ

Given a I molal concuntration, we can dissolve 1 mole

of solute in 1000 granis of solvent. Thercfore, n 1.

The volume of 1000 grams of water is 10- m3 , hence,

=10
-  m3

We need to convert into atmospheres by dividing

by 1. 013 x 105 Nt/m z atm. Let Y = 1.013 x 105 Nt/mz atm.

W- = (-1 • n <cos O> /('r (Z-38)
ke

Uc- 7.46 x 105 Joule/mole

(1- ) - .987Z3ke

k e = 7C.3 at 250 C

n =1

(cos e)= 6.115 x jo-

y 1.013 x 10 5 Nt/mz atm

T 10-3 m 3

'i; =44.46 atm

i. Z3.70 atm at 0. 535 (n, sea water
concentration consideringNaCI only.

Givena volume of 1000 grams ofw&ter x 103 cm 3,
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and ta4'ing the density of IIO 1 gm/cm 3  10 1

Looo2-m 3 1 3  3
1 qs-n/cm 3

I o 1 - 6 
-,

3

=10 3 m3

(m) IrnolC/1000 gm

7'. - Uc (1 -I ) Nt m n ( x 3
78.3 1. 013 x 10 Nt/mTatm {10" rn

(Cos )= .006 E = 4.1 x 10 3 0 E
12. 33 x 10 -21

E 0.18 x 108 V/m

0
r 10A
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CHAPTER III

Expcrimctal Data

The followir.g data is presented iita!:]1r and graphical

form. This data gives c-motic pressures as a fnction of mol-

ality. The osmotic pressures are listed inatmosph,2res at

25 0 C. Experimental data on the variation of the dielectric

constant of water with temperature is provided. Also, an

empirical relation is formilated to cxpress that variation.

Figure 4 illustrates that for a dilute solution of NaCl

the graph is reasonably Linear.

In figure 5 we observe how osmotic pressure varies with

molality for several salts.
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TABLE 1 . - Osmotic Pressure of LiC1 Solutions at 250C. 16

(I1) g i M .j F'

0.1 .919 1.378 1 4.58
0.2 .939 1. S78 9. 12
0.3 .945 1.890 13.88
0.4 .954 1.C08 is. 4 t
O. 5 . , ' 1 . 1) , t Z3. 6

0.6 .973 1. 916 28.61
0. 7 .98- I. 968 33.65
0.8 .995 1.990 39.10
0.9 1.006 2.012 44.25
1.0 1.018 2.036 49.75
1. 2 1.041 2.082 61.25
1. 1.066 2.132 73.10
1. 6 1.091 2.182 85.60
1.8 1 N6 2.232 98.40

2. o.I,12 2.2.1 110.10
2.5 1.212 2.424 148.80
3.0 1. 286 2. 572 189.00
3.5 1. 366 Z. 732 234.1
4.0 1.449 2.898 282.9
4.5 1. 533 3.066 338.2
5.0 1.619 3.218 396.1
5.5 1.705 3. -40 460. 0

6.0 1.791 3.582 WZ6.0

(m) = concentration
g = osmoti'; coefficient
j = Z at infinite dilution i Z

=o i. (m). 24. 5 osmotic pressure in atmospheres
= 2980K

P = 103 Kg/m 3 H 0 density
R = 8. 314 Joules mol°K
Y = 1. 013 x 105 Nt/tn2 atrn

PRT= 24.5
Y
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TABLE 2. - Osmotic Prcssurc of NaC1 Solutions at 250C. 17

(in ) g ' = Tn0. .r

0. 1 0. 932 1. 86j4 4. 56

0.2 0. 9.5 1. 850 Q. 04
0.3 0.922 1.8.4 13.55

0.4 0.920 1. 840 iS. 02
. 0.921 1 42 2 .

0.6 0.923 1. S1. 27. 12
0. 7 0. 926 1. 852 31. 80
0.8 0.029 1. 85S 3.37
0.9 0.912 1. S64 41.20
1.0 0.936 1. 872 45.80
1.2 0.9.13 1. S s 55.50

1.,!0. 0 l . 2  5. -'5

1. 6 0.962 1. 92.1 75.5

1 .8 0., 972 1. 94. 85.9
2. 0 O. 9 ; ). .9(6 06.2
2. 5 1. 013 2.026 124. 1

3.0 1.015 2.090 153.2
3. 5 1.080 2. 160 1 -. 1
4.0 1.116 2.232 218.9
4.5 1.153 2.306 254. 1
5.0 1.192 2.3,q 1 293.0

5.5 1.231 2. -162 332.0
6.0 1.271 2.542 374.0
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TABLE 3 - Osmotic Pressure of'KCl Solutions at 25 0 C. 18

(r< .: c. J 7T

0.1 r. 927 1. 354 4.54
0.2 0. 9i3 1.826 8.95

0.3 0. 9C6 1.812 13.31
0.4 0.902 1.804 17.70
0. C. 899 1. 7n3 22.1

O.0. 0.899 1.796 26.4
0.7 0.897 1.794 30.79

0.8 0.397 1.794 35.1

0.9 0.897 1.794 39.46

1.0 0.897 1.794 44.0.
1.2 0.899 1.798 52.8
1.4 0.901 1.802 62.0

1.6 0.904 1.808 71.0

1.8 0.908 1.816 80.0
2.0 0.912 1.836 90.0

2.5 0.924 1.848 113.0
3.0 0. 937 1.874 138.0

3.5 0.950 1.900 163.0
4.0 0.965 1.920 188.0
4.5 0.980 1.960 216.0
5.0 . . .. . .. . .

5.5 . . .. . .. . .

6.0 . . .. .. . .
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TABLE 4 - si-o:ic PrCssurc of 1LLCI 5jutio:.s 25 0C.

(9) i e: j

0.1 0.923 1,846 4.52

0.2 0.907 1.814 8.9

0.3 0. 898 1. 796 13.2

0.4 0. S93 1. 786 27. 51

0.5 0.889 1. 778 21.77

0.6 0.887 1.774 26.1

0.7 0.8c3 1. 772 30.4

0.3 0.886 1.772 37.0

0.9 0.885 1.770 39.0

1.0 0.885 1. 770 43.4
i. 2 0. 886 1.772 52.0

.4 0. 888 1.776 61.0

1.6 0.890 1. 780 69.75

1.8 0.893 I. 786 78. 7

2.0 0.896 1.792 88.0

2.5 0.905 1.810 110.8

3.0 0.916 1.832 134.9.

3.5 0.928 1. 856 159.0

4.0 0.941 1. 882 184.9

4.5 0.952 1.904 210.0

5.0 0.966 1.930 237.0

5.5 . .-.. . .. .

6.0
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TABLE 5 .- Osmotic Pressure of CsClSolutions at 25 0 C. z 0

(im) g g .*o

0. 1 0. C 1 7 . )3. 4. 50
0. 2 ). 697, 1. -194 6. 80

0.3 0.885 1.770 13.08
0.4 0.875 1. 750 17.15
0.5 0.869 1.738 21. 21
0.6 0.864 1.728 25.4
0.7 0.861 1.722 29.4
0.S 0. 859 1. 718 33. 6i
0.9 0. 858 1.716 37.8
1.0 0.857 1.714 42.0
1.2 0.856 1.712 50.4
1.4 0.856 1.712 58.75
1.6 0.857 1.714 67.2
1.8 0.859 1.718 75.7
2.0 0. 862 1.724 84.4
Z. 5 0. 869 1.738 106.1
3.0 0.879 1.758 129.0
3.5 0.889 1.778 152. 1
4.0 0.900 1.800 176.1
4.5 0.912 1.824 201.0
5.0 0.924 1.848 226.1
5.5 - - - - - -

6.0.



TABLE 6 .- Osmotic Pressure of NaCI Solutions at four
different temperatures. -

(M) 25 0 C 40 0 C 60 0 C 100 0C

0. 001 G. 05 0. 05 0.05 0. Co
0.01 0.17 0.49 0.52 0. 57
0.05 2.31 2.41 2.53 2. 75
0.10 4.56 4.76 5.00 5.42
0. zo 9.04 9.44 9.93 10.74
0.40 18.02 18.84 19.83 21.45
0.60 27.12 28.40 29.92 32. 35
0.80 36.37 38.14 40.22 43.48
1.00 45.8j 48.08 50.76 54.87
2.00 96.2 101.3 107.3 115.9
3.00 153.2 161.6 171.0 184.2
4. 00 218.9 230.5 243.3 260. 8
5.00 295.2 309.4 325.2 346. 5
6. 00 384. 1 400.2 -U. 0 442. 2

112



TABLE 7 .- Osmotic Pressures for LiCI, NaCI, IZC1, RbC1
an, d S C 1.

(m) LiC I N- CI i'C ,bC CsC I

0.1 4.56 -. 5 4.4 4.52 4. 50
(0.Z 9.2 9.04 S. 95 8.90 8. Se
0.3 13.83 13.55 13. 31 13. Z 13.0
0.4 18.41 18. OZ 17.70 17.51 17.15
0.5 23.6 22.6 22.1 21.77 21.zi
0.6 28. 61 7. 12 26.4 Z6.1 25.4
0.7 33.65 31.0o 30.79 30.4 29.4
0.8 39. i0 36.37 35.1 34.7 33.61
0.9 44. 25 41 .20 39.46 39.0 37.8
1.0 49.75 45. 80 44.0 43.4 4Z. 0
1.2 61.25 55.50 52.8 5Z.0 50.4
1.4 73.10 65.25 62.0 61.0 58.75
1.6 85.60 75.50 71.0 69.75 67. Z
1.8 98.40 85.9. 80.0 78.7 75.7
2.0 112.10 96.2 90.0 88.0 84.4
Z. 5 148.80 124.1 113.0 110.8 106.1
3.0 189.00 153.2 138.0 134.9 129.0
3.5 234. 1 185.1 163.0 15910 152.1
4.0 282.9 218.9 188.0 184.0 176.1
4.5 338.2 25-.1 216.0 210. 0 2101.0
5.0 396.1 Z83.0 - - - 237.0 226.1
5.5 460.0 33Z.0 .. . ..... .
6.0 526.0 374.0
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TABLE 8. Dielectric Constar*- of Water at various tempera-
L.

tures.

t°C k e  ke

0 87.74 87.90 87. 8

5 85.S6 85. 90 65. 8

10 83.83 83.95 83.9

15 Oi. 95 82.04 82.0

18 80.84 80, 95 80.88

20 80.10 80.18 80.1

25 7. 30 78.36 78.3

30 76.55 76. 58 76.5

35 74.83 74. S5 74.84

38 73.82 73.83 73.82

40 73.15 73.15 73.15

45 71.51 71.50 71.5

50 69.91 69.88 69.9

55 68.34 68.30 68.3

60 66.81 66. 76 66.8

65 65.32 65.25 65.3

70 63.86 63.73 63.8

75 62.43 62.34 62.4

80 61.03 60.93 61.0

85 59.66 59.55 59.6

90 58.32 58.20 58.26

95 57.01 56.88 56.9

100 55.72 55.58 55.65

* From data of Malmberg andMaryott (1956)

t From dataof Owen, Miller, Milner and Cagan (1961)

ke An average of andke

* From this data it can be shown that ke x T3 / 2 is approxirna-

*tely a constant.
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TAD LE 9 Variation of k with temperature

3/2kexT =a

k t°C '  T in K T k x Te

67. 0 73 4.- :G iC 3. 95 x 10

85.8 5 278 4.64 x 103 3.98 x 205

83.9 10 283 4.74 x 103 3.97 x 105

82.8 15 288 4. 86 x 10- 4.01 x 10'

80.1 20 293 5.04 x 103 4.04 x 105

7o.3 2- 2.i5 x 404 x1-5

5 303 5. 30 x -1.06 10

7. .i 35 3CS 5.-12 x 1 4.05 x 1C5

73.82 3S 311 5.51 x 103 4.06 x 10'
73. 15 -10 313 5.56 ; 103 4.06 x 05

71.5 45 318 5.69 x 103 4.06 x 105

69.9 50 323 5. 83 x 103 4.06 x 105

68.3 55 328 5.94 x 103 4.05 N 105

66.8 60 333 6.'.2 x 103 4.0 Sx 105
5. 3 65 338 6.25 x 103 4.05 x 105

b3.8 70 343 U.29 x 103  4.01 x 105

62.4 75 348 6. 53 x 103  4.06 x 105

61.0 80 353 6.66 x 103 4.06 x 105

59.6 85 358 6.83 x 103 4.06 x 105

58.26 90 363 6.95 x 103 4.05 x 105

56.9 95 368 7.10 x 103 4.04 x 105

55.65 100 373 7.25 x 103 4.04 x 10'

3/2
In Table 9 we see that k. x T is a constant4 4. 04 x. 105
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TABLE 10 .- AnApplication of Equation (2-38)

Salt A B C D E F

LiCI 193.9 191.42 8. 01lx10 5  7.91 7.91x10 3  47.46

% 3
NaCI i6%0. 5 17o. 20 T. t-i o . 30 7.36xIl - :

KC1 165.3 162.20 6.79 x !0: 6. 70 7.70-,!03 40.2

RbCI 158.1 156.08 6.53x10 5  6.45 6.45x10 3  3'.7

CsCI I-is. S - . 90 6.15 ,: 19 6.07 . . 10 .!C,

A = Lattice energies U c in Kcal/mole23

B = Column A multiplied by (I - I/ke) ke 7S. 3

C = Column B multiplied by -13,4 Joule

D = Column C divided by 1. 013 x 105 Nt/n-atn

E = Column D multiplied by I rnole/10 - 3 m 3

F = Column E multiplied by <cos O> = 6 x0 - 3

Column F expresses the osmotic pressure of each

given saltin atmospieres for a concentration of

Imolal at 25 0 C.
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From iigure 5 , note the iollowing linear relationships and

tile range of their appro:ih'atc iiear-ty at a ,onitant temp-

eratur ' 5

5: !e ,", a . e ,-::

LiCI 77. = 45. 8 (M) 0 to 0. 2
NaCi 7ro = 415. 2 (n0 to 0.
NaC . 452(n) 0tO
KCI .0 (:n) 0 to 1. Z
RbC1 r. = 1 43.4 (rn). 0 to 1.4
CSC1 -'r,,= _' n (1-), 0 to C, .,

TABLE 11 .- xperinmental andCalculated L,-tttice Znergies
of Alkali Haides (Kcal/imo-ej .

Expe riinental Ca 1culated

Salt (Bor. -iia-cr (Simpie
Cycle) Elect ro. ta-

tic Model)

LiCi 200. 3 193.9
NaCI IS4.1 180. 5
KC 167. 6 164. 3
RbCI 163.1 158.1
CsCI 150. 5 148.8

TABLE 12 i- hterionic distapces, electrostatic potentials,

and ionic radii. 2 5

Salt (LT;terionic (Potential) Radii in A
Distance)

LiCi Z.57 29.14 Li 0.68
NaCI Z. 82 22.64 Na 0.98
KC1 3.147 18.79 K 1. 33
RbCI 3.291 17.69 Rb 1.48

CsCi - - - 16.58 Cs 1.68

C 1.81
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Figure 4 .- Osmotic Pressure of Sodium Chloride Solutions at 25 0 C

For 0. 533 (n), the osmotic pressure ir is 24. 21 atn.
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CHAPTER IV

Discussion and Conclusions

The expe rimental values for the 1;Lttice entri3 fr Er

LiCI, NaCi, KC,, RbCi, and CsCi show a progressive in-

crease. The charge densities for Lithium, Potassium, So -

diurn, Rubidium and Cesium in their ionic itate show a pro -

gres~ive decrease. Then :e eltctrostati, potentials for

each would follow the same trend. Futharnore, the elec-

tric field strengths decrease as a consequence. Another de-

duction is that bN an electrostatic nodel of ionic crystcals, the

electrostatic energies for LiCI, NaCI, KCI, RbCl andCsC!

drop inthatordcr. Consequently, we should expect the osmo-

tic pressure for each saltto drop correspondin-ly, all o:her

experimental conditions held equal. The data demonstrates

this dramatically. Thus, any theory of osmosis :r.USt pre -

dict this trend. Equation (2-38) predicts osmotic pressures

for the above salt solutions for dilute concentrations. So

long as the ions in solution are sufficiently far apart, the

osmotic pressure is directly proportional to the concentra-

tion. As seen in figure 4, this theory coincides closely with

the data. The temperature dependenceof equation (2-38) va-

120



ries in the following way"
& NA e3  vT T- ) n -. 9

A7 + 
((39

where a = 4.04x10
5

With additional invetig1ionelot could lead to a

more general equationthan (?-39).

121



RE FERENCES

B. Mhan , Un,c rit. Cl.; .i-trv (Rc'Ujn2,Na-sachusett"

Addison Wesley Publishing Co-npany, Inc., 1965).

i ohn %Viie'f; aind So: n, h . F 71).

3 Introduction co Solid State Physics (New York: John Wiley &
Sons, Lic., 1971)

4 pau! Andcr .nd Antlho2.. J. Sonnessa, Princinles of Chemnistry
(..e.v York: The n~ilan Conpal;, 19(5).

3?vlichel j. Sicmko and Robert A. Plane, ChemistrV (New York:
McGraw-HillBook Company, 1966).

6 A. Laubengayer, General Chemistry ((New York: Holt, Rine-

hart and Win-iton, 1957).

7 Francis WestonSears and Mark W. Zemansky, University
Phvsics (Reading, Massachusetts: Addison-Wesley Publishing
Company, Inc., 1964).

8J. C. Slater, introduction to ChemicalPhvsics (New York:
Dover Publications, Inc. 1939).

9 Introduction to ChemicalPhysics (New York: Dover Publi-
cations, Lnc. , 1939).

10 Universitv Physics (Reading, Massachusetts: Addison -

Wesley Publishing Company, Inc., 1964).

UIntroduction to Solid State Physics (New York: John Wiley &
Sons, Inc., 1971).

12
Introduction to Solid State Physics (New York: John Wiley &

Sons, Inc., 1971).

13 David Hallidav and r,,bcrt Resnick, Physics Part 11
(New York: JohnWiley & Sons, 1960).

14R.A Robinson andR. H. Stokes, Electrolyte Solutions
(London: Butte rworths Scientific Publications, 1959).

"i

122

''I



iF. 0. Rice and Edv.,aru "ier, The Stractura ofMatter.

(New York: Science Editionb, Lic. , 19 o).

10
R. A. Robinson, Trans., Farauay Society, (1945) 41, 756

" R. A. Robinsonand P. A. Sinclair, Trans., Faraday

Society, (1934), 56, 1830.

1R ..- .'o inn O;, T rans. x ,' e ' . (1945), 75, ZCO .

18R. A. Robinson, Trans. Roy. Soc. N. Z., (1945), 75, 203.

19 R. A. Robinson, Ibid., (1937 ), 59, 64.

20 -2 R.A. R i.cnand P. A. Sinclair, !-id., (!934), 56, i33U.

2 1 H. S. Harnedand 0. E. Schupp, Ibid., (1930), 52, 3836.

7J. Hamner, i{andbookof Physicsand Chemistry, ed. E. U.
Condon and Hugh Odishaw, (New York: McGraw - Hill Company,
1958).

2 3 J. Huhecy, Inorganic Chemistry (New York: Harper & Row
Publishers, 1972).

41norgani Chemistry (New York: Harper $ Row Publishers,

1972).

2 5 Introduction to Solid State Physics (New York: John Wiley &
Sons, Inc., 1971).

123



71A FREE BOUNDARY PROBLEM IN NEWTONIAN FLOW

-W. G. Pritchard , Yuriko Renardy , L. R. Scott

ABSTRACT. The construction of a computer program or code solve
Ssteady free surface flows with surface tension at smail Reynolds numbers is

described. The code uses fixed-point iteration for the nonlinearities in the
SNavier-Stokes equations and a second-order finite element scheme. Before
using the code on general flow problems such as coiting flows, it is necessary
to test it as thoroughly and rigorously as possible. Numerical tests for such
a code are usually only done against a previ Rl mputed approximate
solution to the driven-cavity flow. However, -we-have instead chosen to test
as- code against three flows for which exact solutions are known: the
Couette-Poiseuille flow, the Jeffrey-Hamel flow and Richardson's stick-slip
flow. Convergence tests are presented. _ _ --

1. INTRODUCTION. An example of a flow we are interested in is the flow
problem when fluid emerges from a nozzle at sal, Reynolds numbers. Attempts
have been made to solve this problem by assuming that the fluid separates at
the lip of the nozzle [1], [2]. Experimental work by Pritchard showed that
this is not a valid assumption and Jean and Pritchard [3] have set this
problem (see figure 1) in a way which could be demonstrated to provide a
unique solution. They prescribe the contact angle. The separation point is
then sought as part of the solution. Jean [4] gives the existence and
uniqueness proofs for this. Similar results by quite different methods have
also been obtained by Solonnikov. References to his work are in Jean's paper
[4]. The only other free-surface study of this kind for which numerical
schemes have been analyzed and tested appears to be by Cuvelier [5]. His exit
boundary conditions are slightly different from ours.

Free surface

givenugie

C A solid B

Figure 1

Department of Mathematics, University of Essex, U.K.

Mathematics Research Center, University of Wisconsin-Madison, 610 Walnut
Street, Madison, WI 53706. Sponsored by the United State Army under Contract
No. DAAG29-80-C-0041.
a..

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109.
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2. EQUATIONS OF MOTION. The two-dimensional flow out of a nozzle onto a
wall is shown in Figure 1. The velocity u and pressure p satisfy the
dimensionless Navier-Stokes equations:

V2 - Vp + Re u.Vu (1)

where the Reynolds number Re is UL/v, U is a typical speed, L 4s a
typical length scale, v is the kinematic viscosity, and incompressibility:

V.u - 0 . (2)
The free-surface boundary conditions ares on y - Y(x), A ( x 3,

u.n 0 (3)

n 0 (4)

T -p" + 2 a (5)
p2

3 - given (6)

where T is the surface tension, uf is the normal component of the
velocity and n is the unit normal vector pointing out of the fluid at the
free-surface, ut  is the tangential component of velocity. The velocity
fields at boundaries x - C and x m B are given. At the solid boundaries,
u - 0.

3. METHOD OF SOLUTION. The method of solution we propose is an
iterative one. We first quess the shape of the free-surface. Secondly we
compute the velocity and pressure fields using two of the free surface
conditions: zero normal flow (3) and zero shear stress (4). Thirdly we
compute a new free surface from conditions (5), (6) and (7). This iteration
is continued. Under suitable conditions such as the presence of surface
tension, low Re and a good enough initial guess for Y(x), this scheme will
converge to a unique solution [3). This method has been found not to converge
if the surface tension is too low (61. Indeed, Jean's proof does not apply to
flows with zero surface tension and it is not clear that a unique solution
exists for such flows. Since the position of the boundary must be adjusted at
each iterate, a finite element method was suggested. The zero shear stress
condition then appears as a natural boundary condition ii -,e variational
formulation. For simplicity, we have used a second-order suhene. The most
efficient in terms of work needed to compute the solution is a scheme analyzed
by Crouzeix and Raviart [71 which is based on the Hodge decomposition. The
domain is triangulated. A triangulation is shown in Figure 2.
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Figure 2

A weak formulation is: find velocity g R + j and pressure p, where
is a reference function and incorPorates the boundary (denoted by 30)
conditions,

u e V, V - ue (H) 2 I div - 0, - 0 on M- y(x),U -
m.n- 0 on Y(x) ,

such that
-(Vu,Vw) - -(p,V.w) + (Re.u.Vu,w) (7)

for all we w, w - {w e (HI) 2  w - 0 on Q - Y(x), w.n - 0 on Y(x). To
N

solve for the velocity field, let the discretised u be u = i~ . The N
i-1

basis functions 4 and the N test functions w are chosen to be
nonconforming, discretely divergence free, and piecewise linear.
"Nonconforming" refers to the property that these functions do not have to be
continuous across the edges of the triangles. However, they must satisfy
compatibility conditions [7], which, for piecewise linear functions, is the
continuity at the midpoints of the edges. "Discretely divergence - free*
means, for piecewise linear functions, that Vdiv w dxdy vanishes over
each triangle. This is equivalent to: for each triangle,
3

WV n(m i)eiI - 0 where leil is the lnngth of the ith edge, wn(mi ) is

the normal component of w at the ith midpoint. The test function associated
with a vertex V and the one associated with a midpoint M of an edge are
shown in Figure 3.

Figure 3
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T~.e pressure never enters in the calcolation of the velocity field and we
compute it only when it is needed, unlike methods where it is carried
explicitly (8]. Since the applications we have in mind are at low Re, we
merely use a straightforward fixed-point-iteration method, starting with an
initial iterate at zero Re. Also, by concentrating on a near-Stokes problem,
we can use very efficient solvers, such as conjugate gradients, for the linear
algebra.

After the velocity field has been computed, we compute p by using a
non-solenoidal piecewise linear vector w (see Figure 4) in equation (7).
The discretized pressure field is piecewise constant so that the integrals in
(7) can be calculated expllcitly. The pressure on one of the

Figure 4

triangles will be prescribed, and then the code marches through the domain
from there. The estimates for errors are given by Crouzeix and Raviart (7]
for the Stokes problem and have been extended to the Navier-Stokes equations
by Rannacher and Heywood [91.

4. CONVERGENCE TESTS. The three exact solutions used for the
convergence tests describe Stokes flows. However, the discretization
introduces perturbations and we can use these flows also-to test the code for
Navier-Stokes flows.

y
y up A y

0 ~0o x

-l

(1) (2)(3

(1) Couette-Poiseuille flow. The upper wall at. y I is moving with speed
UP and there is a pressure gradient. The test area is a unit square with

velocities prescribed on the boundaries. Figure 5 is a graph of
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£n(h) verses Ln(L 2 error), h - mesh size, for Re - 1, showing that the

error varies as h2 . For higher Re up to about 50, the method converged
provided the fixed-point iteration was under- elaxed; that is, to calculate

th t trt (n) u(n-i )
the nth iterate u , replace u- in the nonlinear terms by
u (n-1) + r(u(n-l) - u(n-2)), 0 4 r 4 1. The optimum value for r can be

found by trial and error to lie in 0.25 < r < 0.5. Convergence tests for the
pressure code at Re - 0 have confirmed the analysis [7] that the L2 error
should be proportional to h.

33%33 ,.,LSL.

C-P tL
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(2) Jeffrey-1ael flow. This is purely radial flow into or out of two walls
meeting at an angle a at the origin where there is a source or sink. The

test area was chosen to be a'trapezoid one unit away from the origin and we

have chosen to work with outgoing flow. The exact solution, in polar

coordinates, is described by u - (V u(9),0) where the Navier-Stokes
r

equations yield (u" + 4u + 6u 2)(8) - C on 0 < C a, u(0) = u(a) - 0. A
finite-difference scheme was devised to generate the exact solution, using
centered difference for u" and a Newton scheme for the nonlinearity. Figure
6 shows the Ln(L error) vs In(h) for various Re. Tne Re here denotes

2
an "average" Reynolds num"er. It shows that the second-order convergence is
more asymptotic for higher Re. For the fixed-point iteration, under-
relaxation was necessary for the Re larger than 0.082 and the number of
iterations required increased to 12 for the 17 x 17 mesh at Re - 18. A

study is currently underway to record the behaviour of the code to different
triangulations.

/ I
acIVra. R1Lsaos /
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(3) Richardson's stick-slip problem [10]. The boundaries of the flow are at
y ± I. For x < 0, these boundaries are solid. For x > 0, fluid slips at
these boundaries. Here, the conditions are zero normal flow and zero shear
stress. Stress is infinite at x = 0, y - ti. These points mimic the stress
singularities at the contact point of the general flow in Figure 1. The flow
is driven by prescribed Poiseuille flow upstream and uniform flow downstream.

Since the velocity at the singularities behaves like vr, the L2  ror
should be proportional to h3 12  for areas on the singularities, and to
for areas away from them. Figure 7 shows the results of the convergence tests
and shows agreement with the theoretical analysis. The broken lines are for

test area away from the si-ngularities. The pressure solver is currently being
tested for this flow.
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EVOI.rTION OF NEAR CHAPMAN-JIO;ET OEII.FAC RATI ONS

D.S. Stewart
Department of Theoretical and Appliced Mechanics

University of Illinois, Urbana-Champaign, IL 61801

+G.S.S. Ludford

Department of Theoretical and Applied Mechanics
Cornell University, Ithaca, NY 14853

ABSTRACT. In order to analytically investigate flame acceleration effects,
Stewart and Ludford-(19 83a), (1983b) posed a model rationally derived from
Arrehnius kinetics in which the temperature of the thin reaction zone is con-
stant. For small heat-release during combu tion this model has been shown to
have a simple limiting form. In this pape- snow that such a model leads to
a Burger's equation for the evolution of disturbances moving with the flame
when the flame has been accelerated close to its Chapman-Jouget value (the max-
imum steady deflagration velocity). The flame forms a moving boundary that
imposes certain conditions on the solution. The problem thus posed is a moving
boundary problem; the solution and the location of the flame are to be found
simultaneously. Numerical results are given for examples of compressional and
rarefactive disturbances applied to the unbounded Chapman-Jouget flame. Bound-
ary effects are also investigated. .

I. INTRODUCTION. A near Chapman-Jouget deflagration is a weak deflagra-
tion that travels at a speed close to the Chapman-Jouget (CJ) speed. An exam-
ination of the Rankine-Hugoniot relations, (Williams (1965)), shows that the
CJ velocity represents the maximum velocity for steady deflagrations. The CJ
value depends upon the amount of heat released by the reaction. In particular
when this heat-release is small compared to the thermal energy of the mixture,
characterized by a parameter << 1 (say), then the CJ value approaches the
quiescent sound speed of the fluid far upstream. Also, the density, particle
velocity and temperature are disturbed slightly from their quiescent values as
well.

Based on these principles and other assumptions (one dimensionality, con-
stant material properties, fuel into product and very fast Arrehnius kinetics
among them) Stewart and Ludford (1983b) have shown that a Burger's-like equation
governs the time dependent evolution of near CJ deflagrations.

The dimensionless density, fluid velocity, temperature and reduced mass
fraction of the deficient reactant will be denoted by p, v, T, Y. (The reduced
mass fraction is the mass fraction of the reactant divided by its quiescent
value.) The temperature and density units are the quiescent values. The vel-
ocity unit is the quiescent sound speed; the length unit is )/c M, where X
and cp are respectively the thermal conductivity and the speci~ic heat of the

+This work was supported by U.S. Army Research Office
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fluid, and M (a mass flux) is the product of the quiescent density and the
quiescent speed of sound. Finally, the time unit is formed by the ratio of
the length and velocity units.

The reader is referred to the paper of Stewart and Ludford (1983b) for a

more complete description of the results presented here.

II. THE EVOLUTION EQUATION.

LeL

u = v(1)

T

be a vector that represent the state of the gas, (note that the mass fraction
Y plays a passive role having the unburnt value Yo upstream and the burnt
value 0 downstream). V is the velocity of the deflagration. u = uo cor-
responds to quiescent conditions upstream and V = -1 corresponds to a
deflagration moving to the left at the quiescent speed of sound. Then, near
CJ deflagrations can be characterized by

U = + f(n,T) rB + V = -1 + c(T) B + (2)
T

where r = (l,-l,y-i) and n and T represent dimensionless space and time.
f(n,T) and c(T) are specified by the problem

fT - c(T) f, 2- f f = I
T 2l 2 2 nn'

f(O,T) = 0, f,n (0+,T) - f, (O-,T) = - Y /y (3)

f(n,O) = h(n)

Y /y is a specified constant; y is the ratio of specific heats of the
myxture; h(n) is the initial data corresponding to the initial disturbance
and it is assumed to satisfy the conditions on f at n = 0.

The steady solutions of (3) (Stewart, Kapila and Ludford (1983)) found
by setting f'T = 0 a:id c constant, are

0  for n < 0

f = (4)

f+(l - e 6 n)/[l - (f+ /f_ )e 6 n] for n > 0

where
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2

6 = (Y + 1)(f_ - f+)/2y , f+ 2c{-14: -Y (y + 1)/2c }/(y + 1) (5)

c is supposed known and must be greater than or equal to the CJ value

C = Yo (y + 1)/2 . (6)

Since (3a) is a Burger's equation, written in a frame moving with the
deflagration, the Hopf-Cole transformation leads to a linear equation in the
transform variable 0 aid leads to simplification in further analytical and
numerical treatment. Letting

f 2y, /(y+l), i.e., 4 = A(T)exp[(y+l) j f(T)dn/2y] , (7)

0

Stewart and Ludford (1983b) showed that 4 satisfies

01 - c(T) , = 4) for n < 0

29

- c(T)O,= I + Y (y + 1)0/ 4y for n > 0 , (8)¢'T c()0n 2 'i-r o

, (0,T) = 0 , 0(0+,T) = 0(0-,T) 4(n,0) = g(n) ,

where h = 2yg,1/(y + l)g. Any solution of the problem (8) to within an
unspecified constant corresponds to a solution of (3).

The steady solutions of (8) are simply

0 = 1 for n < 0
r n r+) (9)

4 = (r e - - r_ e )/(r+ - r_) for n > 0

where r+ = - c{l 1 - c /c }/y . In particular when c c Ccj r r+ = r_
-C Cj/y and

= (I - rn)e , for n > 0 . (10)

III. NUMERICAL RESULTS. Various initial-value problems were solved by
an implicit finite-difference scheme. An initial profile for the amplitude
function f was chosen as well as an initial value of c. The corresponding
0 -profile for n < 0 and n > 0 were advanced independently to the next
time step using condition (8c) and requiring that f remain constant at large
positive and negative values of n; i.e., definition (7a) with f fixed was
the additional boundary condition at large n. At this stage the condition
(8d) wasn't necessarily satisfied, the difference 0(0+,T) - *(O,T) generally

t
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being non-zero. If the difference was non-zero, a new value of c was chosen
and p was determined as before. The process was repeated until (8d) was
satisfied to within a prescribed tolerance. (A secant root finding procedure
to find the root of the difference was used to iterate for c). The procedure
was repeated at a new time step, and so on.

Some numerical experiments were performed by taking the initial profile
of f to be the superposition of a disturbance on the steady profiles (4). It
was decided to study the effect of compressional and rarefactive disturbances
applied to the steady deflagrations. Since the initial data could be specified
independently upstream and downstream, the effects of only an upstream dis-
turbance (or only a downstream disturbance) could be studied as well as the
effects of combined disturbances.

Physically, the pressure perturbation is the sum of the density and
temperature perturbations since the ideal gas law P = pT holds (P being the
dimensionless pressure). The perturbation is then found from (2) to be yf.
Hence, increasing the value of f corresponds to increasing the pressure and
vice-versa. Figure 1 shows an example of a steady deflagration, y = 1.4, c = 2,
Yo = 1, denoted by a dashied line; the deflagration is simply a rarefaction in
the burnt region. Typical compressional and rarefactive disturbances that were
applied singly, (e.g., a compression in the burnt region and no disturbance in
the fresh) and in combination are shown as well.

Compressional disturbances applied singly, both in the fresh (n < 0) and
burnt (ri > 0) regions caused the flame to decelerate at first (c increasing)
whence the flame returned to its original velocity and the profile for f
relaxed to the steady profile. The opposite behavior was observed for rare-
factive disturbances applied singly upstream and downstream.

When disturbances were applied in combination their effects were amplified
or reduced depending on the single disturbance response. For example, rare-
factive disturbances in the fresh and burnt regions both caused an acceleration.
However, the combined effect of a fresh and burnt rarefaction caused the de-
flagration to accelerate to a larger velocity (smaller value of c) than either
disturbance applied singly. The numerical results for the example of Figure 1
are shown in Figures 2 and 3.

From these results, it appears that the acceleration response of these
deflagrations is much more sensitive to disturbances in the burnt region than
in the fresh. The extent of this sensitivity can only be established by addi-
tional numerical experimentation or further analytical results. Also, all the
steady deflagrations eyarmined numerically, including the limiting CJ deflagra-
tion, behaved similarly. In particular, the deflagrations seemed stable to
imposed disturbances of the type considered here.

An additional numerical experiment was performed in which the boundary
condition on f , far downstream, was varied in order to simulate the effect of
a shock or piston eminating far downstream. In the first experiment the value
of f at n - 10 (say) was changed at a uniform rate from its steady value
at T = 0 to the value -1 at T = .6 and then held fixed for further time.
This corresponds to imposing and maintaining a rarefaction on the burnt side.
The results in Figure 4 show that it was possible to accelerate the deflagra-
tion and hold its velocity at a value above the CJ velocity. By varying the
value of f at the boundary, different values of c could be attained.
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Figure 5 shows the results when the value of f at 1 = 10 (say) was
increased at a constant rate to zero by T = 1.2 and held fixed thereafter.
This corresponds to an imposed compression far downstream. The amplitude

of the solution in the burnt region seemed to decay to zero everywhere,
while the spee: gradually, then rapidly, decelerated (c increasing). This

result is consistent with the earlier analysis by Stewart and Ludford (1983b)
showing that no 0(01) perturbation occurs when the wave speed differs from

its CJ value by an 0(1) amount. Hence, as the velocitr decelerates and its
difference from -i can no longer be measured by the 0() perturbation c
then the solution must vanish.
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Eine Kleine Eigenvalueproblem

(A Simple but Informative Nonlinear Eigenvaiue Problem)

0B., A. Fleishman
Mathematical Sciences Department
Rensselaer Polytechnic Institute

Troy, NY 12181

_ P.' W. Davis
Mathematical Sciences Department
Worcester Polytechnic Institute

Worcester, MA 016G9

ABSTRACT

The simple eigenvalue problem

-d2U/dX2 = Asgn u, u(0) = u(1) = 0

(X a real parameter)"exhibits a number of interesting properties of nonlinear
Problerm, some establisned here by elementary arguents. For each eigenvalue
we find all eigenfunctions (an infinite nurber of them) in exlpicit form. As
A increases through 0, there is an exchange of stability: the trivial solu-
tion, fornerly stable, beacoes unstable while the maxonal and minimal eigen-
functions (A 1 0) are stable. The stability of non-extremal eigenfunctions
is also discussed. _

The work of the authors was supported by the U. S. Army Research Office under
contract numbers DAAG-29-79-C-0012 and DAAG-29-81-K-0018, respectively.
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1. Introduction

We consider here the nonlinear eigenvalue problem

-d 2u/dx2 = Xsgn u (0 < x <) (1)

u(0) = u() = 0 (2)

where sgn u = u/jul for u 3 0 and sgn 0 O, x and u are
real variables and A is a real parameter. A number of properties
characteristic of nonlinear problems are exhibited, and as will be
seen, because of the special nature of the nonlinearity some prop-
erties are established by elementary arguments.

We find that all A > 0 are eigenvalues, and all eigenfunctions
(a countable infinity) are found in explicit form. As A increases
through 0 there is an exchange of stability: the t:ivial solution,
formerly stable, becomes unstable, while the maximal and minimal
eigenfunctions (for X > 0) are stable. The stability of non-extre-
mal eigenfunctions is also discussed. An iteration scheme based on

problem (1-2) turns out to have interesting features. It is possible
to follow in detail the development of an iterative sequence, and we
are able to show for several important examples that iterative
sequences converge in a finite number of steps.

Differential equations with signum nonlinearties were much
studied in the 1950's and 60's as models of relay (or on-off) control
systems [1,2]. In recent years discontinuous nonlinearties have
arisen also in a variety of free boundary problems [4]. This investi-
gation has originated from a desire to gain further insight into the
special properties of nonlinear systems with discontinuous nonlin-
earties.

In Section 2 all eigenvalues and eigenfunctions are exhibited.
Sections 3 and 4 contain general remarks about the iteration scheme
and a few detailed examples. Questions of stability are addressed
in Section 5. We restate here the results of a rigorous proof of
stability of the maximal and minimal eigenfunctions, given elsewhere.
For the non-extremal solutions, a linear stability analysis is
developed in general and applied in a specific case.

2. Eigenvalues and Eigenfunctions

We first establish

Proposition 1. All A > 0 are eigenvalues of (1-2), and these
are the only eigenvalues.

Proof. Clearly X = 0 is not an eigenvalue, for then the boundary
value problem (1-2) has only the trivial solution. For fixed X 0,
let
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v(x) = U /.(3

Substitution in (1) yields -v" = sgn(Av). When X < 0, sgn(xv)
= -sgn v and we have to solve the boundary value problem

(X<0) v" = sgn v, 0<x<l, v(0) = v(1) = 0.

Then by a maximum principle argument it follows readily that
v(x) H 0 is the only solution.

When X > 0, sgn(xv) = sgn v and (1-2) reduces to

(X>0) -v" = sgn v, 0 < x < 1, v(0) = v(l) = 0. (4)

This boundary value problem has been discussed in [4] Assuming that
a solution v(x) has constant sign, say v > 0 (and therefore
sgn v = 1) on (0,1), we find that v(x) = x(l-x). Hence, each
X >0 has associated with it the eigenfunction u(x) = Xv(x), and
the proof of Proposition 1 is complete.

It is not hard to see that there is also a solution of (4) of
opposite sign. Thus, the problem (1-2) has two eigenfunctions

u(x) = ± , (X) - 2x(l-x). (5)

In addition, there are solutions of non-constant sign (in fact,
infinitely many), whose graphs are constructed by patching together
parabolic arcs which are alternately concave up and conc. ve down,
at uniformly spaced points on the x-axis. As shown in [3], the
following is true.

Proposition 2. For any given X > 0, the totality of eigenfunctions
is given by

u(x) = ±A~n(X), n = 1,2,...,

where
n(X = l-l~kx k k+l

W = 2 -(X )(- - x) (6)

for k/n < x <(k+l)/n, k = 0,1,..., n-i, with

II 2max Vn(x) = 1/8n

The graphs of #l' *2 and 3 are shown in Figure 1.

From now on, in considering iterative procedures and stability,
we shall refer for convenience to problem (4) for v(x), rather
than to problem (1-2). There is no loss of generality since, as
shown above, for fixed X > 0, v(x) is a solution of (4) if and
only if u(x) = Xv(x) is a solution of (1-2).

II
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3. Iteration: Description of Procedure; General Remarks

Since all the other solutions of (4), v = ± n' n = 2,3,...,

lie between i and -0i' the latter two are, respectively, the

"maximal" and "minimal" solutions of (4). If we had not found explicit
representations of all these solutions by elementary means, it is
reasonable to ask which, if any, might be determined, even approxi-
mately, by iteration.

Based on problem (4), we consider the sequence v n(x)}, where

for n = 1,2,.., Vn (x) is the solution of

-v" = sgn vnl (0 < x < 1), v(0) = v(l) = 0, (7)

and v0 (x) is a prescribed function. Solutions to (7) are required

to be C1  and piecewise C 2 . Since the right-hand side of the
differential equation will always be a specific piecewise-constant
function, the solution will always consist of quadratic and/or
linear functions patched together smoothly at given values of x.
It follows too that the solution will be unique.

Because we can find iterates in this problem explicitly, we shall
be able to examine, in greater detail than is usually possible in
nonlinear problems, the behavior of the iterative sequence for
different choices of v0. Another reason for studying such behavior

is that it may give indications of stability properties for various
solutions of (4).

We shall treat three choices of v0 : a) v0  has fixed sign,

say v0 > 0, on (0,1); b) v0  changes sign once in (0,1); c)

v0  changes sign twice in (0,1). These are illustrated in Figure 2.

4. Iteration: Three C',oices for v0 .

a) Suppose v0 (x) > 0 for 0 < x < 1. Then sgn v0 = 1, and
1

as the solution of (7), we have v(x) = x(l-x) = *l(x). Similarly

v2 (x) = v3 (x) = ... = W1 (X). If v is negative on (0,1) then2 3 0

v l(x) = -# (x). The actual values of v0 (x) are irrelevant. In

other words, if the initial iterate is positive-valued (resp. nega-
tive-valued) on (0,1), the sequence of iterates converges to
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(resp. - and convergence takes place in one step! There is a

suggestion here that the maximal/minimal solutions ± i are stable

in some sense (which is made precise in the next section and proved
in [3] ). In the same sense, the trivial solution v(x) = 0 would
appear to be unstable, since if v0  is arbicrarily small in magni-
tude but positive-valued, vl(x) = 01 (x), while simply changing the

sign of v 0 yields i l(x) = -el(X).

b) Now we choose v 0 close to ¢2 in its sign variation. As the

simplest non-trivial choice for v0, this case will be treated in

detail. Specifically, suppose

v0 (x) > 0 on I :0 < x < x0 ; V0 (x) < 0 on Ir :x0 < x < i,

where x0  is a given number satisfying

1/2 < x 0 < 1.

It is helpful, but not necessary, to think of x0 as close to 1/2.

Then from equation (7), vI must satisfy

-v" = 1 on I , -v" = -1 on Ir v(0) = v(l) = 0

with v and v' continuous at x0. Note that we do not require

v1 (X0) = 0; in fact the point of this calculation is to determine

an x in (0,1) such that v1 (X1 ) = 0. In general, x1  x0.

Integrating twice, we have quadratic functions representing
v 1on each of the intervals I and I ; imposing the boundary

and continuity conditions, we obtain
_x2  (X 2 2x+1xo 0 < X < X0
-- -(x 0 - 2x0 + )x on I£: 0

v W(x) 2 (8)

x + x0 on I: x x < 1.

The graph of v1  consists of two parabolic arcs joined smoothly at

(x0 , V1 (X0)); the arc on the left, concave downward, passes through
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the origin, while the one on the right, concave upward, passes

through the point (1,0).

As noted above, vl(X0 ) 0 (unless x0 = 1/2). The sign of

v1 (X0) determines the fate of the iterative sequence. For example,

consider 1/2 < x0 < 1, and let x1  denote the zero of v 1  in

(0,1): V1 (X1 ) = 0. Now if v1 (X0 ) is positive, vl(X) > 0 for

0 < x < X0 . Hence, we expect 1/2 < x0 < x 1 < 1. Repeating the

argument for successive iterates should show that their interior
zeroes march off to the right. The iterates themselves should move
away from 2"

To demonstrate this result precisely, consider 1/2 < x0 < 1.

Then (8) yields
1

v l (x0 ) = -x 0 (x0 - )(X- ) > 0.

(Similarly, 0 < x < 1/2 would irply vl(x0) < 0, which would

lead to the zeroes of successive iterates marching off to the left
toward 0 from 1/2.)

Thus, vl(X) > 0 for 0 < x < x0. If v1  has a zero x1

in (0,1), then it must lie in (x0,1). To determine x we must

use from (8) the representation of vl(X) on Ir .  Setting

2

v1 (xI) = x- (x2 + 1) xI + x2 = 0

gives xI = 1 (which was built into the function v ) and

X = 2x
2

1 0

The simplicity of this relation between the zereos of successive
iterates has several immediate consequences of interest.

1
First, from x > 2, 2x0 > 1 we have xI  (2x0) x0 > x0 , in

agreement with our previous conclusion.
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Second, if x0 > 1/ /2 then x= 2x2 > 1, which means that

vI has no zero in (x0 ,1 ), v1  is positive-valued throughout (0,1),

and the next step of the iteration gives v2 
= *i" In other words,

if 1/ /2 < x0 < 1, the itoration scheme converges to I and in

two steps.

Finally, for any x0  in (1/2,1), repeating the previous

argument gives for the zeroes xn of successive iterates vn,I

2 3 4
x2 = 2x 1 2 x 0 ,

2 =41 2 7x
x 3 = 2x 2  2 12X0 2 78

(2 n_) (2 n 1 2n

xn = 2 - x 0  2 (2x0 )

Let N be the first integer n for which xn > 1, or (2x0) > 2.

Then the seauence {. } converges to i in N + 1 steps, where

N
2 _ (in2)/Zn k2x 0).

On the other hand, if 0 < x0 < 1/2 for v0 positive on

(0,x0 ) and negative on (x0 ,1 ), since x0,xl,x 2 ,... march to the

left with increasing n, the interval (O,xn) on which vn  is

positive gets smaller. Again convergence takes place in a finite

number of steps, but now v n - 0i"

c) Suppose v0 has two changes in sign:

, 0, 0 < X < x 0,

V 0 ( x  < Of X 0  < X < X 1

> 0, x1 < X < 1,

where x is close to 1/3 and xI is close to 2/3. In its
0 0

sign variation v0  is similar to 03 (see Figure 1 and Figure 2c).
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Clearly there are more cases to consider here than in the previous
example and in any case the algebra is messier.

Without showing the analysis (which is similar to that of the
previous example) we describe here the results for two cases:

1
i) 1/3 < x0 < x1 < 2/3,

ii) x0 < 1/3, x1 > 2/3.

(Recall that *3 vanishes at x = 1/3 and x = 2/3.)

Simply stated, the result for both cases is that the zereos
(if any) of successive iterates move steadily away from 1/3 and
2/3 respectively, toward the middle of the interval (0,1) in case
i) and toward the ends of the interval in case ii). In each case,
as long as an iterate has zeroes within (0,1) it resembles its
predecessor in its sign variation. When an itereate is reached
that has constant sign on (0,1), then (as in the two prior examples)
the next iterate is *i or -Ol' the limit for that sequence.

In case i) the limit is 0l' while in case ii) it is -0i" In

either case convergence takes place in a finite number of steps.

5. Stability.

The behavior of iterative sequences in a nonlinear time-
independent problem in approaching (resp. receding from) a particular
solution of the problem corresponds frequently to the stability
(resp. instability) of the latter as a steady state of a related
time-dependent (parabolic) problem. Thus the iteration results in
the previous section suggest that the maximal and minimal solutions
±OI of (4) are stable while ±O2' 3 are unstable steady states

of an appropriate parabolic problem.

In part a) the stability of ±Oi is described, based on a

rigorous analysis carried out previously [3] . In part b) a
linearized stability analysis is formulated in general and then
applied to a treatment of ±O2"

a) Consider the boundary-value problem in S: (0,1) X (0,-)
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w/a t - a2 w/ax2 = sgn w, 0 < x < i, t > 0, (9)

(PP) w(0,t) = w(lt) = 0, t > 0, (10)

w(x,0) f(x), 0 < x < 1 (11)

By a solution of (PP) we mean a function w(x,t) .uch that w and
w are continuous in [0,1]x [0,-] , wt is continuous in S, (10-11)x

are satisfied, and at all points of S where w : 0, w is contin-
uous and (9) holds. xx

Proposition 3. (see [3] for proof). For any continuously differen-
tiable initial state f(x) which is positive-valued on (0,1) and
satisfies f(0) = f(l) = 0, f' (0) > 0, and f' (1) < 0, the unique
solution w(x,t) of (PP) approaches el(x) asymptotically (and

uniformly in x) as t . Likewise, -el(x) is the uniform

limit in time of initial states -f(x), where f is as above.

b) A rigorous stability result of the type stated above for -+€

is not available for ±-n , n > 1. For the latter, therefore, we

resort to a formal linear stability analysis. After outlining the
general procedures, we carry out the details in the case n = 2.

If v(x) is the particular solution of (4) whose stability is
under study, we consider again (PP), the time-dependent version of
(4), where nowwe take f(x) close to v(x):

w(x,0) = f(x) = v(x + Ey(x), (11)

y an arbitrary bounded function.

Assuming a solution of the form w(x,t) = v(x) + Ez(x,t), we
substitute for w in (9-10).

Using -v" = sgn v and retaining only terms linear in c, we
find that z(x,t) satisfies

zt - zxx = 26(v(x))z,

z(0,t) - z(l,t) = 0.
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The delta function arises from a formal use of Taylor's theorem:

sgn (v+cz) sgn v + Ez d sgn w

sgn dw dw W = V

= sgn v + 2 z6(v)

(See (5] for similar treatment of a discontinuous nonlinearity.)

Finally, applying the method of separation of variables, with

z(xot) = e X v(x), leads to the eigenvalue problem

y" + 26(v(x))y = Xy,
(12)

y(0) = y(1) = C

If this problem has a positive eigenvalue X, with eigenfunction

y(x), then v(x) is unstable, in that the small initial perturba-
tion cy(x) gives rise to the solution of (PP), W(x,t) = v(x)

+Ee y(x), whose deviation from v(x) grows exponentially in t.

Let v(x) = *2 (x). The only zero of t 2 (x) in (0,1) is at

x = 1/2; then in equation (12), 6(v(x)) = 6( 2 (x))= 6 x - 1/2)/l#'(1/2)f.

From (6) we see that t (1/2) = -1/4. Finally, setting x = 2

(for X > 0), we rewrite the eigenvalue problem in the form

2
y- 4 y + 86(x-i/2)y = 0

y(0) - y() = 0 .

Solving the differential equation y" - 2 = 0 on (0,1/2)

and (1/2,1) subject to the boundary conditions at each end, we
have

y(x) = c1 sinh Wx, y' (x) = c I V cosh 1x, 0 < x < 1/2,

y(x) = c2 sinh P(l-x), y'(x) = c 2 icosh l (l-x), 1/2 < x < 1.
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Requiring that y be continuous on [0,1] gives c 1  c2

(1 1, for convenience). The singularity prevents y' from being

continuous. A jump condition on y' results from taking

+ [y"(x)W - p 2y(x) + 86(x - 1/2)y(x)] dx = 0 (T > 0)

-r)

and letting n- 0. Since y(x) is continuous at x = 1/2, the
integral of the second term qoes to zero, and we have

y' (1/2+) - y' (1/2-) + 8y(i/2) = 0

The expressions for y(x) and y' (x) for x > 1/2 and
x < 1/2 then yield

u I- cosh (/2) - cosh (P/2)] -8 sinh (i/2)

or

tanh (P/2) = p/4. (13)

Since the graphs of s = P/4 and s = tanh P/2 intersect in the

first (and third) quadrant of the P,s-plane, equation (13) has non-

zero real roots, say ±P0; thus X- is a positive eigenvalue

of problem (12), so that *2 is an unstable solution of (9-10-11).

So is - 2'

We have not carried out the details for the other 4ns, but

nnwe suspect that ±n' n >i, are all unstable.
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ABSTRACT

The rate of bubble evolution and hence the rate of mass trans-
port across a curved liquid-gas interface has been examined both

theoretically and experimentally. The closed liquid volume constraint
provides the mechanism by which the gas bubble may be placed initially
in-a state of stable equilibrium, thus allowing an accurate determina-
tion of the system parameters. The stirred liquid condition is

measured with the use of laser-doppler anemometry. Through an experi-
mental examination on the complete dissolution of nitrogen gas bubbles
in water, the mechanism of mass transport is shown to be consistent

with a model comprised of two processes: 1) the primary and rate-
limiting process is odelled by the diffusion of gas through an
unstirred liquid boundary layer whose thickness varies with bubble
radius and 2) a second-order limitation is shown to be due to the

condition of non-equilibrium of the gas component at the phase
boundary. The non-linearity of mass transport is shown to increase as

curvature of the liquid-gas interface increases.
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INTRODULTION

A number of experimental studies have been conducted of bubbles

in a stirred liquid [1-61, however none of tLe kinetic analyses have

applied to the circumstance of a bubble contained in a volume of

liquid closed to external mass transport or to those liquid-gas

interfaces of large curvature. Here we consider the evolution of a

bubble under such conditions. The closed volume constraint allows us

to initially place the bubble in a state of stable equilibrium [71 and

therefore the system parameters such as total gas content and liquid

volume can be determined. We investigate two features previously not

considered in this type of problem; firstly, we assume the existence

of a thin unstirred layer of liquid of variable thickness at the

bubble boundary (past expressions assume a constant thickness [8]) and

secondly, we consider the interfacial resistance to mass transport

across the liquid-gas phase boundary [9].

MODEL EQUATIONS

We begin this study by considering the boundary value problem

shown schematically in Fig. 1 in which a single bubble of radius R is

immersed in a liquid of a finite volume and of radius b. It is

assumed that the liquid surrounding the bubble is well-stirred except

for a thin unstirred boundary layer of thickness 6 . The transport of

gas through the unstirred liquid is governed by the following diffu-

sion equation:
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-2 c

1 _ 2ll)c
(rc) - R 4 r. R + 6 t > 0 (1)

2 2 D Dtr )r

subject to the following initial and boundary conditions:

c C0  , R 4 r 4 b , t - 0, (2)

c = cm , R + 6< r , b , t > 0, and (3)

c c(R) , r = R , t > 0 , (4)

where r is the radius taken from the centre of the bubble and c and D

are, respectively, the concentration and diffusivity of the gas

component in the liquid phase. This diffusion problem can be solved

by an Integral Transform Method [10].

We depart from the conventional procedure of assuming that the

gas component is in local equilibrium across the phase boundary and

instead adopt the expression for the mass flux across the interface

from a recently developed statistical rate theory [9]. The non-

equilibrium mass flux is given by:

Jgl - kgl[a/c(R) - c(R)/] , (5)

where the rate constant, kg1 , is a property of the liquid-gas solution

and c is the gas solubility or that value of the gas concentration
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that would be in equilibrium with the liquid-gas solution.

W4e introduce a second flux expression that arises from the

diffusion of gas through the unstirred layer of liquid:

Jgj - -D(D c/a r) IR , (6)

where the gradient of gas concentration is determined through the

solution of Eq. 1. By equating the two flux expressions, we obtain a

quadratic expression for determining the dissolved gas concentration

at the phase boundary, i.e. c at R:

c(R) 2 - (yO/kgl)(3 ck r) IR - 0 . (7)

For detail on the solution to the gas concentration gradient see Ref.

11.

We hypothesize the following formulation for the thickness of

the unstirred layer of liquid around the bubble:

6 - Z/I - exp(-R/Z)] , (8)

where the parameter Z is the unstirred layer thickness for a flat

interface; that is, as the bubble radius tends to infinity. This

expression is unique in that it also satisfies the constraint of
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a vanishing unstirred layer as the bubble radius tends to zero; in

fact, our expression suggests that the unstirred layer thickness

approaches the bubble radius in that limit.

Finally, the evolution of the bubble is determined by equating

the mass flow at the phase boundary to the net change of gas molecules

in the gaseous phase:

dNg/dt = -4wR 2 Jgj . (9)

We assume ideal gas behaviour and introduce the Laplace relationship

to the above expression to obtain the following rate equation for

bubble evolution:

dR/dt = kTJgl/(P - Pv + 4y/3R) , (10)

where k is the Boltzmann constant, T is the temperature, P is the

liquid pressure, Pv is the vapour pressure and y is the liquid surface

tension. Of all the parameters introduced in the theory, only the

value of Z is unknown, all other parameters can be measured or pre-

dicted.

EXPERIMENTAL EXAMINATION OF BUBBLE EVOLUTION

V

A single bubble is generated in a water-nitrogen solution,
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caught as a set of thin glass fibres and then lowered into a spheri-

cally shaped cavity of approximately 1.3 cc in volume. After posi-

tioning the bubble, more or less concentrically, the cavity is sealed

and the liquid pressure is controlled to within 0.04 mnmg by a mercury

plug in contact with a gas reservoir. A micro stir bar is rotated to

ensure adequate mixing of the water-nitrogen solution. Greater detail

on the experimental arrangement can be found in Ref. 7.

Laser-doppler anemometry 1121 was used to measure the motion of

liquid as it was stirred. It was found that the liquid motion was

both laminar and sinusoidal, a finding consistent with all the stir

rates measured, namely 2, 3, 4 and 5 Hz. An analysis of the fluid

velocities indicates that the root mean square velocity of the

fluctuating component exceeds the value of the mean flow for all stir

rates. We conclude therefore, that although the flow is laminar,

there is a good degree of mixing.

Once the bubble was stabilized in the cavity 173, the liquid

pressure was increased and the bubble was allowed to dissolve away

completely. Figure 2 shows the sequence of photographs taken during

the complete dissolution of one such bubble. Note the various stages

of bubble attachment to the glass fibres, labelled fl through f4.

Figure 3 shows the measured values of the bubble radius,

indicated by the circles, and the theoretical path of evolution, given
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by the solid line, for a stirred liquid condition of 5 Hz. The solid

line was obtained by numerical integration of the rate equation (Eq.

10) and by applying various values of Z until the best agreement was

found through a least squares analysis. The slight deviation between

the experiment and theory for bubble radii of less than 30 um may be

due to the obstruction of mass transport by the presence of the glass

fibres. Finally, the dashed line shows the thickness of the unstirred

boundary layer.

Figure 4 shows the bubble dissolution for a stirred liquid con-

dition of 2 Hz. The theoretical fit begins to deteriorate at a bubble

radius of less than 100 ujm. This re-sult is not surprising considering

the assumption that the unstirred boundary layer is perfectly concen-

tric. Since the flow of liquid has been shown to be laminar with

superimposed sinusoidal oscillations, the streamlines of flow around

the bubble are skewed, the degree depending upon the stir rate. For a

low stir rate of 2 Hz, the assumption of a concentric unstirred liquid

layer is therefore not consistent with the experimental result.

In Figure 5, the experimental results for bubble evolution in a

stirred liquid condition of 3 Hz is shown to be in excellent agreement

with the theoretical prediction. We consider the liquid to be well-

stirred in this circumstance. For completeness, the rate of bubblei
evolution was documented for a stirred liquid condition of 4 Hz and

again, excellent agreement between experiment and theory was obtained
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as can be seen in Fig. b. We emphasize that these experiments have

been repeated and the results have been consistent.

SUMMARY

Through a series of experiments, we have shown that the evolu-

tion of a bubble in a well-stirred liquid of finite volume can be

modelled by assuming a thin unstirred layer of liquid of radial

dependent thickness surrounding the bubble. It is to be noted that

the unstirred layer thickness changes significantly only for small

bubble radii. Less obvious is the finding that the non-equilibrium

condition of mass transport across the phase boundary becomes increas-

ingly Important as the bubble radius decreases. It can be stated that

for bubbles immersed in a stirred liquid, an unstirred liquid layer of

constant thickness and a condition of local equilibrium of the gas

component at the liquid-gas boundary are valid assumptions only if the

f" bubble radius exceeds 300 pm.
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Schematic of the geometry for the examination of bubble

evolution. A single gas bubble of radius R is shown bounded

by a thin unstirred layer of liquid of thickness 6 and

immersed in a finite well-stirred liquid of radius b.
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.)t =0- b) t =0.5 min

_______________t_ 20 t Qmin d) t 30 min

e) t =40min f) t = 4 3 min

Sequence of photographs of the complete dissolution of a
bubble in a water-nitrogen solution stirred at 5 Hz. The

initial bubble radius was 298 .4um and the liquid pressure F ig ure 2
was increased from 743.55 mm Hg to 829.40 Hg. 168
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C
0 ON GROWTH PROCESSES OF CONDENSATION AEROSOLS

J. R. Brock
\ Chemical Engineering Department

___ University of Texas

Austin, Texas 78712

ABSTRACT. Aerosol particles formed by condensation of a vapor
grow by the processes of coagulation and condensation/evaporation. Some
properties of the evolution equations describing each of these processes
are discussed. The complexity of the rate coefficients for these pre-
cesses precludes general analytical solutions and necessitates numerical
approximation. Some aproaches to numerical analysis of the coagulation

and condensation/evapoVation processes are outlined briefly.

I. INTRODUCTION. An aerosol of coalescing (liquid) particles

formed by nucleation from a single chemical species is usually charac-

terized by its particle size distribution [1]. For such aerosols, the
goal of simulation studies is to describe the evolution of this distri-

bution. This evolution begins with the aggregation of monomeric mole-
cular species at sufficiently high supersaturations to form stable parti-

cles which subsequently grow by the processes of coagulation and conden-

sation/evaporation.

The description of the nucleation step in aerosol formation remains
as one of the unsolved problems of classified physics [2]. Therefore,
a complete theory of aerosol evolution is not now possible. However,

an approximate theory is possible in the later evolutionary stages where
coagulation and condensation/evaporation are the only growth processes
in infinite, spatially homogeneous systems.

In this paper some aspects of aerosol growth by coagulation and
condensation/evaporation are discussed. In the first section, the

theories of Brownian coagulation and Knudsen condensation/evaporation
are discussed. The rate coefficients of these processes are sufficiently

complex that only numerical solution of the evolution equations of
coagulation and condensation/evaporation is possible. Some numerical

procedures are rutlined in the final section.

II. COAGULATION AND CONDENSATION. Ihe formation of particles in a
condensing vapor is controlled by the vapor supersaturation, S. So
long as S is greater than the critical supersaturation, S for that
temperature, new particles will be created by nucleation. For a spa-

tially homogeneous, isothermal system prepared with an initial S > S
cp

173

K j _ _ __-_ _ _ _ .. .



S will decrease as nucleation and condensation on existing stable par-
ticles continues. Eventually, S < S and production of new particles
ceases. Subsequent to nucleation the stable particles grow by the
coagulation and condensation/evaporation processes. In this section
these are examined.

For a uniform system, after nucleation the evolution of the ultra-
fine aerosol can be rupr sented by the conservation equations in the
continuous representation for the number density function n(x,t) and

the vapor mass concentration, c. For a uniform system with no sources
of particles:

-~nxt)= N x dx'b(x-x',x') n(x-x',t) n(x,t)

t X

- n(x,t) fw dx'b(x',x) n(x~t)

ax- -[T(x,t) n(x,t)] (i)

where n(x,t) dx is the number of particles with masses in the range x, dx
at time t. x* is the mass of the critical nucleus. For a uniform
system, b(x',x) is the Brownian coagulation coefficient [3] given by

the expression:

b(x',x) = 4P(R + R') (D + D') 3
1/(1 + 4 (D + D')/(x 1/3 + x,/3 (-2 + V,2

3 -1

x (4/3) ITR p; V = (8KT/rx) 2 ;

-CKnD (KT/6vIR) (1 + Kn (A + Be )) (2)

where R is the radius of a particle of mass x, p is the particle density,
KT is the thermal energy, pthe viscosity of the host gas, and Kn the
Knudsen number. Here Kn = L/R, where T is the molecular mean free
path of the host gas. Tie first and second terms on the right hand
side of equation (1) represent the coagulation process. The third term
represents the condensation/evaporation process, where T is the rate

coefficient [4]:

2 Ke !

T(x) =R 2 V I  (S- e ) Tr Kn
= - Knn

1 + Kn (4-Kn) + 1.016
i 4 Ka
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where:

V 8 ,; Kn = L/R; L 2 Dlh (ml/2KT) S c/c

m is the molecular mass of the condensing monomer, D1h is the diffusion
of the monomer in the 1ost gas and c is the vapor mass concentration
corresponding to the vapor pressure Yn the bulk condensate. Ke is the
Kelvin number: Ke = 2ay/RKT, where a is the surface tension and y the
molecular volume of the condensed state. Equation (1) is coupled to the
vapor mass conservatioh equation:

c - dxT(x,c) n(x,t) - x*'(x*,c) n(x*,t) (4)

where x* represents the mass of the critical nucleus size so that
evaporation from this size leads to unstable particles and an addition
to the monomer concentration.

Some of the properties of these processes can be examined by con-

sidering the first two moments of (1) - the total number concentration,
M and total mass concentration M

C

M = n(x,t)dx (5)
0 x

M f x n(x,t)dx (6)
1x*

It is simple to show that the moment equations for (1) and (4) are [1]:

9M
0 * dx'dx b(x',x) n(x,t) n(xt)

+T (x*,c) n(x*,t) (7)

= f* dx T (x,c,t) n(x,t) + x* T (x*,c) n(x*,t) (8)

As can be demonstrated easily (e.g. [1]) the coagulation process con-
serves particle mass and this term vanishes in obtaining equation (8).
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Also, adding (4) and (8) gives:

--- (M1 + c) =0 (9)

so that, as obvious from the specifications of the physical system, the
total mass concentration of particles plus monomc'r is invariant. The
number concentration, M (t) decreases not only by coagulation but also by
the instability below x , which is determined by the critical super-
saturation S for the system temperature, T. According to the classical
theory, the radius of the critical nucleus, R*, is:

R* = 2cy/KTlnS (10)

3
ans therefore: x* = (4/3) frR *P

As particle growth proceeds at S < Sc, the point separating the
regions of evaporation and condensation is given by:

R = 20y/KT in S (11)
0

since Y(Ro ) = 0. As the stable particles grow by coagulation and con-
densation, R increases as S decreases. Clearly, as S - 1, R 0 -. In
the initial stages of growth, particle sizes are small and those with
radii R < R will evaporate rapidly when Ke '> 1. This evaporation0

supplies monomeric vapor which permits condensation to proceed for par-
ticles with R > R

0

In many applications mononeric vapor is not conserved as in the
system described. Instead mixing with external streams may rapidly lower
S, perhaps to the extent that S < 1. In this case the particles will, of
course, only evaporate. If the vapor pressure of the substance composing
the particles is very small relative to the time scale of interest, then
evaporation may be neglected and coagulation will remain as the only
growth process.

The work of Sutugin (e.g. [5]) has shown that under some conditions
formation and growth of ultrafine particles will proceed entirely through
the coagulation mechanism. Regardless of the process suppressing the con-
densation/evaporation process, it is of interest to consider briefly the
characteristic features of the coagulation process.

4 In practice, one is often interested not in the details of n(x,t)
during the nucleation regime or during early stages of growth but in
the form of n(x,t) for long times - the asymptotic distribution. Several
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questions can be posed: given an initial density function n(x,O) in

a system in which only coagulation occurs, will the iorm of this density

function be changed by coagulation, and if so what will be the form of

the new function?

These questions can be studied in the case of coagulation in a

uniform system in which the aerosol evolves according to equation (1)

without the condensation/evaporation term:

n(x,t) = x
t *x, dX b (x-x',x') n(x-x',t) n(x',t)

x

*n(xt) f dx'b(x ,x) n(x',t) (12)

subject to the initial condition n(x,0). The questions posed have been

investigated analytically by a number of investigators (e.g. [6],

[7], [8]) for restricteL forms of n(x,0) and restricted forms of

b(x',x). For Brownian coagulation with b(x',x) given by equation (2)

and more complex density functions, it is only possible to study these

questions by numerical analysis.

We have recently carried out [9] numerical investigations of

equation (12) with b(x',x) given by equation (2) with the view of

determining the existence of an asymptotic limit distribution n(x,t- )

and the empirical distribution providing the best fit to n(x,t-o).

This investigation used the five initial number density functions shown

in Figure 1 in non-dimensional form for convenience: log normal,

exponential, first-order gamma, gamma, and log gamma. Each of the five

density functions has two adjustable parameters which were set by

requiring that the mass concentration and geometric mean particle size

be the same or each if the functions. In this example, after times in

excess of 10 sec. the initial density functions are "forgotten" and all

five are merged essentially into the same density function. The rate

at which the five density functions approach each other can be seen from

Figures 2, 3 and 4 for the moments M2 , M_ and M4 . The log gamma func-

tion merges with the other four at a notceably slower rate. This is

caused by the long tail of this initial function.

The best fit of the asymptotic function approached by the initial

functions is an important question because it is intuitively supposed in

the literature that the log normal density function should describe

aged condensation aerosols. Two tests have been used in determining the

best empirical density function: closeness of fit and randomness of fit.

Five candidate density functions were chosen for these tests: log

normal, first-order gamma, gamma, log gamma, and beta of the second

kind. These were chosen because they have been used in the literature

i by various investigators as representative of the density function of
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condensation aerosols. By a variety of fitting procedures, it was

determined that the lag gamma density function was marginally superior
to the log normal density function in providing an empirical fit to the

numerical asymptotic limit function. Power spectral analysis of residuals

revealed that the throe other functions (first order gamma, gamma, beta

of second kind) were consistently biased and were therefore unacceptable.

The various studies of asymptotic limit distributions produced by

coagulation have all been initiated with unimodal or truncated density
functions. The question arises as to the limit distribution for multi-

modal density functions. It has been pointed out [10] that the diagonal

matrix elements of the Brownian coagulation coefficients are small in
magnitude compared to the off-diagonal elements whose magnitudes are

greatest between the smallest and largest particles. Therefore, growth

in particle size within a mode is a slower process than the rate of

attachment of particles of this mode by another mode of larger particles,

if the number concentrations of the two modes are the same. This qualita-
tive picture has been confirmed by numerical calculations [101, although

the existence of an asymptotic limit was not investigated. The previous

study [9] certainly suggests that a multimodal function will eventually

approach a unimodal asymptotic limit function.

As coagulation of an aerosol with a unimodal density function pro-

ceeds, the characteristic time of coagulation t increases. Approx-oa

imately, tc a . l/bM . Coagulation can therefor be neglected when
the interes in times small in comparison with t . For this situa-
tion, the evolution equation (1) reduces to: coag.

3n(x,t) = _ _ ['(x,S) n(x,t)] (13)Dt X

which is coupled to the monomer conservation equation. In terms of the

supersaturation ratio, S:

dS
=- dx T (x,S,t) n(x,t) - x* T (x*,S) n(x*,t) (14)

dt X

The condition n1 0 << nh introduced at the beginning insures that the

condensation/evaporation process is isothermal. Without this condition,

equations (13) and (14) would be coupled to the energy conservation

equation, as indeed is the case in consideration of rapid growth of
aerosols.
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If the supersaturation, S, is controlled externally equation (13)
is decoupled from (14). In this case, the solution of (13) is very simple
and can be effected by the method of characteristics. For two cases,
similarity is easily demonstrated.

When S = S , a constant, T given by equation (3) is a function only
of x. With the transformations:

yfi fx dx
Y = x ' ,F = Tn, equation (13) becomes:

F+ _F 0  (15)
at ay

which has the solution F = F (y-t) where F is some arbitrary initial
function. Consequently:

n(xt) F (dx_ t) (16)
T (x) Fo (x)

If S = S(t) where S(t) is determined by external variation, then
similarity is also easily shown for the special case: ' = G(x)H(t).
This separation would be valid, for example, for T given by equation (3)
when S >> Ke. With the transformations: x dx t

y f G(x) ' f H(t)dt,

F = G(x)n, equation (13) becomes:

3F 3F+ - 0 (17)u Dy

and F = F(y-u) so that:

1 dx ft H(t)dt) (18)
n(x,t) = G(x) F G(x)

Other special cases of similarity can be demonstrated. More generally,
the solution of (13) is possible by standard procedures.

When S is not externally controlled, equations (13) and (14) are
coupled and no simple solution appears to exist. Equations (13) and
(14) with (3) are non-linear integro-differential equations and only
numerical solution appears to be feasible. In the next part of this
section, some approaches to this numerical problem will be considered

briefly.
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numerical accuracy.

The coagulation process can be simulated numerically with high
accuracy. We have chosen methods which optimize both accuracy and
efficiency. Accuracy has been studied ([101, [16]) by comparison with
analytical solutions for restricted froms of b(x,x') and with Brownian
coagulation, equation (2), by testing for conservation of mass. We
use cubic spline for numprical quadrature and interpolation of the
coagulation terms. Gear's method is used for time integration. Com-
parisons n.oted above show that simulation by these methods is accurate
and reliable and that errors can be reduced to any desired level.

In coinparison with the coagulation term, the condensation/evapora-
tion term iii equation (13) is deceptively simple in appearance. However,
it is a firsL-order hyperbolic equation whose numerical solution is
difficult, as evidenced by the numerous published attempts at numerical
solution of similar hyperbolic equations (simulation of advection, for
example). The difficulty lies in the fact that most numerical schemes
for hyperbolic equations give rise to numerical dispersion and numerical
diffusion. The numerical dispersion, due to the combination of large
phase errors and insufficient damping of short waves, manifests itself
by the unphysical wakes behind and ahead of the simulated regions of
high concentration. Numerical diffusion lowers the peak values of the
concentration distribution but increases the values around the peak.
Numerical methods with "upwinding" can remove numerical dispersion but
create unrealistic numerical diffusion [20]. Numerical methods without
upwinding, such as the finite element method with linear basis functions
(20], [21], [22], [23]) do not introduce much numerical diffusion but
create numerical dispersion. Such dispersion is undesirable for simula-
tion or condensation/evaporation because the dispersion level increases
with time and for prolonged simulations dispersion finally dominates and
creates numerical instability. Also, numerical dispersion may erase the
real "signatures" of the condensation/evaporation processes.

Many methods have been tried to reduce dispersion, such as by intro-
duction of a dissipative term in the Galerkin finite element formulation
((211, (25]) or use of filtering schemes ([261, [27]). These have not
been found to be suitable for condensation/evaporation simulation.

A robust numerical scheme for condensation/evaporation should be
free of numerical dispersion while numerical diffusion is minimized.
Eulerian numerical schemes create numerical dispersion whereas Lagrangian
schemes do not suffer from this difficulty. Using Bonnerot and Jamet's
approach [28], Varoglu and Finn [29] derived a finite element method incor-
porating characteristics for the diffusion-convection equation. This
scheme is free of numerical dispersion. Recently, Neumann [30] derived
an Eulerian-Langrangian numerical scheme for the diffusion-convection
equation, which is also free from numerical dispersion and controls
numerical diffusion.
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Numerical simulation of coagulation and condensation. A variety

of methods have been proposed for num-rical simulation of coagulation and

condensation. Work before 1970 on coagulation has been reviewed by
Drake [11. Since this time, a large number of numerical studies have

been carried out (e.g. r6], [10], [12], r13], [14], [15], [16]) in
uniform systems. In view of the many numerical approximation schemes
which have been proposed, it wou'd 1be desirable to develop test problems
for evaluating these schemes. For very large scale atmospheric aerosol

dynamics simulations, approximate methods may be suitable, given the

existing uncertainties in input data. The emphasis in this discussion will
be on methods of high accuracy which we have employed in simulation studies.

Simulation of condensation aerosol dynamics inXolves particle radii

covering around four orders of magnitude 10 - 10- cm. The logarithmic

transformation suggested by Berry [17] has been employed by us in a

number of studies (e.g. [9], [10], [16], [18], [19]):

x(J) = x(J o ) exp (q(J-J)) (19)

J is a positive number greater than or equal to J . x(J ) is the mass of

a particle starting at J . q is a numerical parameter wRich can be

selected to give equally spaced integer J values. From the definition of
the density function,

n(x(J)) = g(J)/qx(J) (20)

With (19) and (20), equation (1) becomes:

J
ag(Jt) fu dJ' b I (0, J') g(J,t) g(J',t)

Dt ~J1
0

g(Jt) f~ OdJ'b(J,J') g(J',t)
O
0

-j ['(J)g(J)/qx(J)] (21)

and: J = J - in2/q, J > 2;U

J = J + (l/q) ln [l-exp(q(J'-J))];

bl(J,J') = x(J)/x(J) b(x-x',x'),

with b(x-x',x') given by equation (2). The adjustable parameter q has

a great advantage in "fine tuning" for mass or diameter spacings to increase
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In our work, we have modified and combined Varoglu and Finn's
method with Neumann's method because of the requirement, of the conden-
sation/evaporation term. This new method, TsaoIg's method, has been
successful. Figure 5 shows a comparlsolt be.wetn tae ,incar finite element
and our method for continuum (Kn - o) condensation according to the law

= cx1/ 3 with the analytical solution included for coniyarlson. For the
linear finite element method, the magnitude of disrorsion increases with
time. Tsang's method is more accurate than the linear finite element
method ovsr the whole computational domain. For continuum evap - ion,

= -cxl / , Tsang's method gives also good agreement with the aica -ical
solution as shown in Figuru 6.

These preliminary results are encouraging. Work is now underway
on the numerical simulation of equations (1) and (4) using Tsang's method.

III. DISCUSSION. This brief exposition is intended only to sug-
gest some of the interesting problems which remain in the dynamics of
condensation aerosols. Here, only the simplest physical system has
been discussed - that i-, an aerosol of coalescing particles in a uniform
system.

In the "real world" of shocks, flames and jets, highly non-uniform
systems, the theoretical basis for studying aerosol dynamics is lacking
except in certain special cases. An aerosol of particles which do not
coalesce on collision presents special problems in analysis. As a
result of the collisional process, such particles will form larger par-
ticles with complex morphology - chains, branched structures, random
aggregates, etc. - whose description has not yet been achieved.

Owing to deficiencies which have yet to be overcome, the experi-
mental study of aerosol dynamics with sufficient temporal and spatial
resolution is not possible. This situation places special emphasis on
theoretical analysis to lead the way. The description of the dynamics of
high density condensation aerosols in non-uniform systems is a challen-
ging problem for the future for workers in applied mathematics, non-
equilibrium statistical mechanics and fluid dynamics.
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MODELING OF FLOW INTERACTION OF A LIQUID JET
WITH A CONTAMINANT DROPLET

m.4 Lang-Mann Chang
Computational Interior Ballistics Branch

0Interior Ballistics Division
US Army Ballistic Research Laboratory, ARRADCOM

O Aberdeen Proving Ground, Maryland 21005

ABSTRACT. Two flow models have been developed for investigation of the
flow interaction of a liquid jet with a chemical contaminant droplet on a
plane wall. This interaction is considered as a two-dimensional viscous flow
problem. Computer plots are presented for the flow pattern and the evolution
of the droplet upon jet impingement. Displacements and meai velocity of the
droplet upstream edge are provided as functions of jet velocity and fluid
viscosity. These values may be used for evaluation of the efficiency of jet
impingement for decontamination. Typical instantaneous pressure distribution
on the impingement wall is also given. Studies in progress will establish
correlations between flow parameters, such as the incidence angle and the
diameter of the jet, and the performance of jet impingement.

I. INTRODUCTION. 'The present investigation involves utilization of jet
impingement for chemical decontamination. The procedure is to use the great
force produced by the impingement of jets to remove chemical contaminant
droplets from surfaces of a vehicle or equipment. -.

While falling through air, the contaminant droplets as:,ume the shape of
rain drops, with diameters ranging from I mm to 2 mm. After impact on a flat
surface, each droplet may spread out to 2 - 4 mm in diameter and the average
number density of droplets in a surface area of 10 cm by 10 cm is 4.2. Its
viscosity may vary widely from 10 to 1000 times that of plain water primarily
depending on the temperature.

If not re'woved, the contaminant may gradually penetrate into the surface
and become permanent residue or after drying out may appear as a stain on the
surface. A hazardous environment still exists. Of various methods proposed
for removal of the contaminant, utilization of liquid jets appears to be the
most effective and perhaps most economical at the current level of
technoligical development. The liquid jet can easily break up the droplets
and subsequently carry away the con:taminant. A thorough clean-up of the
surface can be achieved 'iy moving the jet toward the contaminant droplets.

The task seems to be as simple as using a sink hose spray to wash a
dish. However, little has been known about the flow interaction of the
individual jets in the spray with the dirt droplets on the dish and about the
effects of varying a flow parameter, such as the incidence angle of the jet,
on the performance of the spray. In the battlefield, in particular, the
supply of jet fluid as well as the power source for the pumping system could
be very limited. As a result, the efficiency of the jet system in terms of
decontaminating a larger area with least consumption of jet fluid and with
shortest period of time to complete the mission is of great concern.

£
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In the design of an highly efficient jet system, the following knowledge
is vital: the general flow pattern, the evolution of the contaminant droplet,
and the effect of varying each flow parameter on the flow. Though this
information can be sought via experiments, the work will need very
sophisticated instrumentation and will be very costly. As an alternative,
computer simulations based on appropriate flow models will be a more desirable
means. In fact, the method can provide much greater flexibility for examining
areas of importance in the flow field and the results can provide better
insights into flow phenomena. The computer results then can be checked by
sample experiments for accuracy.

The present jet-concaminant flow consists of two fluids, namely the jet
fluid and the contaminant, or three fluids if the ambient is treated as the
third one. The two prime fluids are separated by interfaces and have free
surfaces with the ambient. The flow is three-dimensional in nature and is
highly transient. Much research work has been done in the past on jet
impingement problems. However, very few involve a second fluid interacting
with the jet in the impingement region. Historically, Taylor [11 remarked
that in 1890 Michell [2] gave a solution for the pressure distribution on a
flat plate when subjected to a two-dimensional, steady, incompressible,
iviscid jet impingement. Nevertheless, it was not known how the solution was
obtained until Taylor himself derived an expression for the pressure
distribution. In recent years, most of the work in this area is relevant to
the VTOL program (vertical takeoff and landing air craft) and are concentrated
in impingements on a solid surface. Among them, Scholtz and Trass [31 and
Rubell [4,5] considered two- and three-dimensional inviscid, normal and
oblique impingements. Their analytical solutions of the surface pressure
were, in general, in good agreement with experimental data. In another
development which included viscous and turbulence effects, Kotansky and Bower
[61 used incompressible Reynolds equations with a one-equation turbulence
model to calculate the surface pressure upon a two-dimensional normal
impingement. Most recently, Bower [71 extended the problem to three
dimensions and used the popular Jones-Lauder two-equation turbulence model [8]
for surface pressure and velocity predictions. The results compared
reasonably well with measurements. For impingements an a liquid surface, Hunt
[9) and Vanden-Broeck [101 treated the problem as a steady and two-dimensional
one and used simplified theories to characterize the wave-like hydrodynamic
instability occurring at the interface of the two fluids. All of the papers
cited above were dealing with steady-state flows and no analyses were given
for velocity and pressure distributions when a second fluid was present in the
impingement region.

In the present investigation, we have simplified the jet-contaminant flow
by treating it as a two-dimensional problem. We have developed a two-fluid
flow model and a one-fluid flow model suitable for characterizing the
interaction flows developing from two different pre-impingement flow
configurations. The unsteady Navier-Stokes equations have been used to
describe the flow and the computer code SOLA-VOF [111 has been employed for
numerical solutions. Presented are the flow pattern, evolution of the
'contaminant droplet, effects of variation of flow parameters on the flow, and
some typical pressure distributions on the impingement surface.

II. FLOW MODELS. Two configurations can be considered to describe the
pre-impingement flow situations occurring in the decontamination process. In
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the first configuration, as depicted in Figure la, a water jet is directed at
a contaminant droplet which is at rest on a surface. In the second
configuration, Figure Ib, t~e contaminant droplet is covered by a water layer
which is stationary or flowing. In both cases the impingement flow developed
is a three-dimensional problem involving two fluids (contaminant and water)
interacting in a xegion open to the ambient. There exist interfaces
separating the two fluids and each of them may have free surfaces with the
amhient. Methods for solving such a complex problem are not well developed.

In order to simplify the analysis we will develop one-fluid and two-fluid
flow models suitable for characterizing the flows developing from the above
two configurations and also suitable for utilizing the computer code SOLA-VOF
[11] for solutions. Both models describe a two-dimensional viscous flow. It
is noted that the computer code is capable of solving flow problems of two
fluids separated by intLrfaces in a region without voids or one fluid having
voids (the ambient).

For the t4o-fluid model, we establish a two-dimensional channel-type flow
shown In Figure 2. It is essehtially a flow region covering the major part of
the flow shown in Figure lb. The channel contains two fluids, the
contaminant and water which fills the rest of the channel. The upper wall of
the channel coincides with the upper free surface of the water layer so as to
eliminate consideration of the free surfaces. An outflow boundary condition
is specified at this wall and at the ends of the channel, allowing the fluids
to flow out the region. The contaminant which covers a rectangular region is
assumed to wet perfectly the lower wall of the channel. To account for
viscous effects, a no-slip condition is used for the, lower wall. We adapt a
finer mesh near the wall in order to provide better solutions in thin viscous
layers. Finally, a steady uniform jet velocity is specified along a section
of the upper wall. /

For the one-fluid flow model, we establish a flow region shown in Figure
3, in which the contaminant and the water are assumed to have the same

physical properties. In addition, the flow model#iiffers from the two-fluid
flow model in that the water initially filling in the channel is absent and
there is an initial setup for the jet profile inside the channel. After the
flow is initiated, the boundary conditions are identical for both flow
models. In the one-fluid flow model, there are only free surfaces, but no
interfaces, involved. This model is suitable for characterizing the flow
developing from the configuration shown in Figure la for whi'ch the two-fluid
flow model is not applicable because of the existence of both interfaces and
free surfaces and, thus, beyond the capability of the SOLA-VOF code. The
validity of the one-fluid model will be discussed in Section IV of this paper.

III. FLOW EQUATIONS AND METHOD OF SOLUTION. The governing equations for
the model flow are:

continuity l -+ 2- + 1y . 0 (1)

moetu u + u 3nau -. p + V82U+ 32u(2)
momentum x y x lx 2
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-v+ u-LV+ v L_ k + 2 (3)a t x a - P ay La 2  ay2 J

where t is time variable, u and v are the x-component (along the channel) and
the y-component (normal to the channel) of the jet velocity Vt
respectively. The density p, the sound speed c, and the viscosity v, are
constant. In addition, a function F, called the fractional volume of fluid
function, is introduced for tracking the water-contaminant interface. The
function is given as

aF + F + F (4)
Et ax-- ayin

This equation states that F moves with the fluid. In a two-fluid flow the
value of F is unity at any point occupied by the first fluid (say,
contaminant) and zero elsewhere. When averaged over the cells of a
computational mesh, the average value of F in a cell is equal to the
fractional volume of the cell occupied by the first fluid. In particular, a
unity value of F corresponds to a cell full of the first fluid, whereas a zero
value indicates that the cell contains only the second fluid (say, water
including the jet fluid and the water layer of Figure 2). Cells with F values
between zero and one contain an interface, as illustrated in Figure 4. With
this, the interfaces separating the two fluids can be tracked. In the case of
one-fluid flow, the second fluid is replaced by the ambient.

The velocity components u and v in the momentum Eqs. (2) and (3) have
been solved by using the explicit finite difference scheme, while the pressure
p has been computed, coupled with the continuity equation (Eq. (1)) via an
implicit finite difference method. The solution of the F function in Eq. (4)
has been obtained by using the Donor-Accepter flux approximation. Details of
the solution method have been given in Reference 11 of this paper. In order
to observe the evolution (location and shape) of the region covered by the
contaminant droplet, Marker Particles have been embedded in the fluid and move
with it, but do not affect the fluid dynamics.

In the current version of the SOLA-VOF, the viscosities of both fluids in
a flow are considered the same or simply zero. To adapt this code for solving
the present flow which involves two fluids with very different viscosities the
following modification is necessary.

v = v F + (I - F) v (5)
c w

where v is the kinematic viscosity of fluid in a cell, v the kinematic
viscosity of the first fluid (contaminant), v the kinematic viscosity of the
second fluid (jet fluid), and F the function defined in Eq. (4). Similarly,
if the densities of the fluids are not the same, the density in a cell is
approximated to be
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P c F + (1- F) Pw (6)

From Eqs. (5) and (6), we see that the values if v and p In a cell are
functions of F.

Finally, it is noted that the Reynolds numbers based on the jet width and
the velocities used in our computations are in the range of 20 - 2000. Within
this range, Eqs. (2) and (3) are felt to be appropriate for the present flow
analysis, even though the equations do not include turbulence considerations.

IV. COMPUTATIONAL RESULTS AND DISCUSSIONS. The following are the input
data for the computations:

= incidence angle of the Jet = 450

Dj - diameter of the jet (width of the jet in the two-dimensional
model) = 1.83 mm

V - jet velocity, uniformly across the jet width 5 - 12.5 m/sec

Pw - density of plain water = 0.001 Kg/cm 3

Pc - density of the contaminant = 0.00107 Kg/cm
3

v kinematic viscosity of water - 0.0098 cm2 /secV

V = -kinematic viscosity of the contaminant - 0.098 - 9.8 cm2/sec

Contaminant Droplet With Initial Water Layer Coverage. This refers to
the impingement flow developing from the configuration shown in Figure lb.
The two-fluid flow model of Figure 2 applies to this case. The velocities
given above correspond to steady dynamic pressures of 2 - 12 psi, which are
practical for decontamination. The dimension of the contaminant droplet is
taken to he 3 mm x 0.6 mm, representing the average size on a horizontal flat
surface. Two assumptions that have been made are that the contaminant droplei
wets the wall and that the surface tension between the contaminant and the
water can be neglected because it is small.

Before running the computer code SOLA-VOF [11] for the two-fluid flow,
test runs of the code have been made to calculate thesurface pressure upon an
impingement of an incompressible, inviscid, normal jet. The result is in good
agreement with Taylor's prediction. The following presents the results we
have obtained so far in this research program.

Figure 5 s)-ows the flow patterns following the commencement of the jet
impingement. The jet flow comes in along the upper boundary above the left
corner of the contaminant droplet. The small arrows in the flow channel
represent the direction and the magnitude of fluid velocities at various
points. In the left column of the figure, the viscosit5 of the water
(including jet flu d and water layer) is v - 0.0098 cm /sec (real value),
while in the right column, v has artificially been raised to the value of
i.e., v w 0.98 cm /sec. The reason for raising the viscosity is to examine
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the sensitivity of the flow to the variation of the viscosity of the jet
fluid. A comparison between these two columnq shows that the flow patterns
corresponding to these two viscosity values a.e similar. Figure 6 presents
another view of the evolution of the contaminant droplet. In the figure, the
dash-line indicates the initial location of the upstream edge of the droplet
and the distance S represents the displacement of the edge. This displacement
can explicitl, be used to evaluate the performance of a jet impingement flow
for removal o contaminant droplets from a surface.

If the initial water layer above the cohtaminant droplet is reduced from
1 sm in Figure 5 to 0.2 m presently, similarities also are obtained for the
flow pattern and the dsplacement S when the two columns in Figure 7 are
compared. Table I summarizes the results of the displacement S and the mean
velocities S of the droplet tupstream edge for two cases: v - 0.98 cm2 /sec
and v - 9.8 cm2 /sec. The mean velocity here is defined as the value obtained
by dividing the displacement S by the time after the commencement of the jet
flow. We see that espite a dramatic vriation of the Jet fluid viscosity
from v - 0.0098 cmi/sec to v - 9.8 cm /sec, the difference of the resultingw
displacements S is of order oY only 10 - 15%. In view of the large initial

mean velocities, S > 3 m/sec, listed in Table I, this magnitude of difference
is considered insignificant since practically the droplet will be displaced
almost immediately after application of the jet impingement. Therefore, the
one-fluid flow model established in Section II is applicable to characterize
the flow field developing from the configuration shown in Figure Ia.
Physically, the insensitivity of the flow field to the variation of the jet
fluid viscosity has demonstrated the dominance of the inertial force over the
shear force. It should be noted, however, if the impingement location is far
away from the contaminant droplet or if the initial water layer above the
droplet is very thick, then the viscous effects of the jet fluid may not be
ignored.

Contaminant Droplet Without Initial Water Layer Coverage. Now consider
the flow configuration of Figure la for which the one-fluid flow model
applies. Figure 8, obtained from the Tektronix Display Terminal, shows a
series of flow developments following the initiation of the impingement. The
Sjet stream first spreads out on the wall and then engages the contaminant
droplet, and finally is lifted off the wall at some angle. The interface
between the fluid and the contaminant is not shown in the figure since the
one-fluid flow model is used, in which the two fluids have the same
properties. However, using the technique of embedding Marker Particles which
follow the fluid particles in the region initially covered by the contaminant
droplet, we still are Able to track the interface and observe its evolution.
The result is shown in the first column of Figure 9. In the other columns of
the figure, the results corresponding to higher viscosity values are
presented. A comparison of these columns explicitly shows the viscosity
dependence of the flow. It is seen that the viscosity smooths out the
interface profile and resists the movement of the droplet. The latter effect
can be seen in Figure 10. Another interesting result we have found is that
even if the fluid viscosity is as small as 0.098 cm /sec (i.e., 10 times the
viscosity of plain water) the downstream end of the droplet stil remains
unchanged (shape and location) until a large portion of the droplet on the
upstream side has been deformed or broken up.
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Figure 11 shows the displacements S versus time corresponding to various
jet velocities Vj. The origin of the time coordinate in the plot has been
chosen to be the moment the droplet upstream edge starts to move. As
anticipated, the jet velocity has proven to be an important parameter
affecting the jet performance. Figure 12 is a plot of the mean velocity S
versus the displacement S. With the fluid viscosity v - v - v C - 0.98 cm2 /sec,
it shows that as v > 5 m/sec, the droplet upstream edge can move with an
initial velocity geater than 4.2 m/sec. As stated earlier, the velocity is
large enough to displace the droplet almost immediately after jet
impingement. Another important value we have to determine is the rise of
pressure peak on the impingement surface. In some critical areas, such as the
optical windows, of a vehicle, the impact presiure that the areas can take is
limited. Figure 12 presents some typical pressure distributions on the
impingement surface as the jet-contaminant interaction flow continues to
develop. As a result of transient phenomenon, the instantaneous pressure peak
is seen to rise higher t an twice the corresponding steady dynamic pressure of
the jet velocity, 1/2PVj

V. SUMMARY AND CONCLUSIONS. Two flow models have been developed to
investigate the flow interaction of a liquid jet with a chemical contaminant
droplet on a plane wall. If this situation is considered as a two-dimensional
viscous flow, the result from the two-fluid flow model shows that the flow
pattern is insensitive to the variation of the jet fluid viscosity. This
leads to the feasibility of using the one-fluid flow model for characterizing
the flow situation in which the contaminant droplet is not initially covered
by a water layer.

The interfaces between fluids in the two-fluid flow and the free surface
in the one-fluid flow can be tracked by computer simulations. Results from
both models show that the downstream end of the contaminant droplet can remain
unchanged (shape and location) until a large portion of the droplet on the
upstream side has been deformed or broken up. The jet velocity and the
viscosity of the contaminant are important variables affecting the flow
field. The displacement and the mean velocity of the droplet upstream edge
when subjected to a jet impingement can be calculated and can be used to
evaluate the efficiency of the jet impingement for removal of the
contaminant. It is found that with a jet velocity Vj > 5 m/sec, the
impingement can displace the contaminant droplet almost immediately. The
instantaneous pressure on the impingement surface may rise higher tha twice
the corresponding steady dynamic pressure of the jet velocity, 1/2pVj

Further studies to establish correlations between flow parameters and the
efficiency of the jet impingement for decontamination are in progress.

1
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Table I. Displacements and Mean Velocities of
Contaminant Droplet Upstream Edge After
Initiation of Jet Flow

-. 98 cm2/sec

V Times , -. 9cm2 ,Sec v -0. O9cm 2 Issc S S,
MS 

-

ml;e MRS S9 I~ MU ,

- . a.207 4.1 0.214 4.28 3.4
5 0.10 0122 4.22 0.436 4.36 3.2

0.5 0.552 3.68 0.597 3.98 7.5

0.05 0.467 9.3 0.52 10.04 10.2
10 0.10 0. 624 6.24 0.727 7.27 14.10.15 0.52 4.8 07611 5-07 15.6

v-9.8 cm21secC

V. Time Y - 9.8cm 2ISec v -0. 0098CMI/sec S2- 5
i MS - -N--

M/sOc mSm Lns.. Si 2 2
0.05 0.150 3.04 . 17 3.42 11.1

5 0.10 0.280 2.80 0.32 3.20 12.5
0.15 0.409 2.73 0.445 2.7 8.1
0.05 0.257 5.14 0.305 6.10 16.0

10 0.10 0.510 5.10 0.580 5.80 12.1
_ _ 0.15 0.54 3.60 0.620 4.13 13.0
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a. Contaminant Droplet Without b. Contaminant Droplet With
Initial Fluid Layer Coverage Initial Fluid Layer Coverage

Figure 1. Pre-impingement Flow Configurations

OUT-FLOW B. C.

NO-SLIP WALL CONTAMINANT

Figure 2. Two-Fluid Flow Model
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Figure 3. One-Fluid Flow Model
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VISCOUS FLOW OF A DROPLET ON A FLAT SURFACE

Donald A. Drew
0Department of Mathematical Science.;

Rensselaer Polytechnic Institute
Troy, NY 12181

and

Mathematics Research Center
University of Wisconsin-Madison

Madison, WI 53706

INTRODUCTION

->Removal of droplets of a viscous fluid from a surface is important to
dishwashing and decontamination. A person familiar with washing dishes knows
that the task is impossible without a detergent, but also realizes that some
mechanical motion is important. Soaking, even in a good detergent, is not
enough. -We--si focus e attention on the motion of a viscous drop subject
to the forces applied to it by another fluid. This corresponds to the action
of the typical mechanical dishwasher, which uses jets of water, as opposed
the use of a hand-held cloth, or sponge. The cleaning is fluid-mechanical
as opposed to oolid-mechanicalor chemical or thermal.

-We consider the motion of a drop of an incompressible viscous fluid on a
flat surface subject to the flow of anotherAnviscid fluid around it. The
viscous drop is assumed to be so thin that (i) the flow inside the drop is
lubrication flow, and (ii) the presence and motion of the drop does not
disturb the flow of the outer inviscid fluid. The effects of gravity and
surface tension will be assumed to be small compared with the viscous forces. i -

EQUATIONS OF MOTION

The equations of motion inside the drop are

u av-x+- 0 (1)
Tx Ty,

,(u'u a2+ 2u

u (32 u +3u) (2)

,' + , 2L+ + - Pg (3)at x a ay ax 2 ay2

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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where t is time, x is the horizontal coordinate, y is the vertical
coordinate, u is the horizontal velocity, v is the vertical velocity, p
is the pressure, p is the density, P is the viscosity and g is the
gravitational acceleration.

At the interface y = 6(x,t), the jump condition for the stress b-comes

p0 (x,y,t)n - pn + tn * [Vv + (v) T ] + aKn , (4)

where n is the unit normal, a is the eurface tension and K is the
curvature of the interface. The kinematic boundary condition is

a6 6(5)-+ U Tx=v, )

at y - 6(x,t).

We shall assume that t,.e wall is impenetrable, so that

v = 0 (6)

at y = 0.

The other boundary condition at the wall has been the subject of much
discussion (Dussan V. and Davis 1974, Dussan V. 1976, Hocking 1981)..

It is traditional to give conditions on the angle of contact at the
contact lines x - x.(t) and x - x+(t). Recent discussions (Dussan V. 1976)
indicate that if only boundedness of the contact angle is required, there is a
difficulty in obtaining a solution. The concensus is that slip must be
allowed between the wall and the fluid in the drop. Two candidates for the
slip model have been proposed. They are

u = U(d) (7a)

or

u X (7b)

at y - 0. Here U is a given function of d, the distance from the contact
line; X is a parameter which is thought to be proportional to the
intermolecular length. Although our discussion will focus on issues which are
not strongly affected by the choice of slip model, we shall use (7b).

The pressure outside the drop is obtained by solving the equations of
motion for the fluid in the region outside the drop. This involves,
presumably, some nozzle, along with some conditions at infinity. We assume
that the outer fluid is inviscid and irrotational. The velocity can be
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obtained from the solution of Laplace's equation for the stream function *.
The pressure can then be obtained from Bernoulli's equation

PxYt)/ +I 1 712 const. (8)
P0(x t/ 0  2

APPROXIMATE EQUATIONS

Scaling by

X = Lx

y = eLy'

u - UU

v = CEv' (9)

PP' 2 P'
CL

6 = CL6'

t = (L/U)t'

gives

au' v' 0 (10)
Say'

C 2 -+ ' y' + v. L ape + --uj + -2-;) (11)
Is at, ax' x' W2 ax,2

4 PUL tav'+ us v' + -v's - + C2,v' 2 v'+ C (12)
Ii k a x' + a v y ,e - y ' ay 2 ax 2 ( 1 2

where F - PIL2C3. The kinematic boundary condition becomes
"U

36' u'36' "v ' 6
t + U. v at y' = 8'(x',t') (13)

For the jump condition, we have

j + He'x €_i
n " (14)ItI" -- / + 2(3)6' 1.
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and

VL _ IL [ uI + CAiPT21 - + (15)

The pressure outside the droplet is expanded as follows.

pV(x',y',t') = 2U p0 (x,y,t)
C2L

= PU p0 (Lx',l,' ,(L/U)t')

C2L

S P p 0 (Lx',O,(L/U)t') + 0(C)
C 2L

- pI(x',t') (16)

to order C. We shall assume that p;(x',t') is a known function.

The jump condition becomes

Ip6 - P' - a',K') i- C 7 0 ) (17)

where K' is the dimensionless curvature, defined by

K I K'
L

so that

2 2 2a' 6'/ax' = a6' + l2 ) •19

+ C2 (31/3x')2]3/2 ax,2

Also,
3

O' -- (20)

is the dimensionless surface tension.

The wall conditions are

v' -0 (21)

us M aU. ' (22)ay'

at y 0, where A' - A/(CL).
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Let us now let c + 0, with F, a' and ' all assumed to be 0(0).
We have

8u_' av'
-+ -- = 0 (23)

0 - 2 ,2 + a  
(24)ax' 3y1 2

o - - - F (25)

ay'

in the drop, and

+ u' u 2C
1  v, (26)

= pe - OfK (27)

-l 0 (28)ay'

at y' 6'. we shall henceforth drop the primes.

Integrating (25), and using (27) gives

P = PO - OK- F(y - 6) . (29)

Equation (24) gives

3 2u(x,y,t) dp0
a 2 =" '-- - a 2- + F "L6 A(x,t) • (30)

Integrating twice with respect to y, and applying the boundary condition

gives

t:x,y,t) - y(y - 26) - A8A ° (31)

The vertical velocity can be found from (23) to be

v - -I dy' "- -2~ [! (y3/3 - y2 6) + A _ 2
0

+ Ad'*+ A " A)y (32)

I-
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After some manipulations the equation for 6 becomes

ad5 A(6 /3 + A6 2 (33a)

or

a . p a3 [(PO 6 L6 3  2" L IL-;o A3 ( + 1] . (33b)Tt- Ux dx ax 3  a +

We assume that A is small for reasonable droplets. If the dimensional
value of X is on the order of the intermolecular distance, this merely
requires that the droplet is more than a few molecules thick.

We shall also assume that F and 0 are small. If £ is sufficiently
small, it is reasonable to3assume F and a are small also, since F and

a are proportional to .

With these assumptio ,

A(x) = --

and equation (33) becomes

a6 2 6 _2 63 dA (34)
+ A Tx 3

The problem can then be solved by the method of characteristics, where

d6 6 3 dP 0(53 35
dt 3 dp2

dx dP0 2 (36)

t - -K

define the propagation along the characteristics.

Let us now examine various flow possibilities using equations (35) and
(36). There are three qualitatively different possibilities, corresponding to
"streaming" flow along the surface, separating or detaching flow, and
impinging or attaching flow. Both separating and impinging flow are
stagnation line flows.

STREAMING FLOWS

"Streaming" flow is one with no pressure maxima or minima. We model this
situation by assuming dpo/dx - a - constant. Equation (33) becomes
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36 236
- G 6  0 .(37)

The characteristics are given by

d 0 (38)
dt

dx = - 62. (39)
dt

Thus

x = -a62t + x0  (40)

on each characteristic. If a < 0, the characteristics move toward
increasing x. We also note that those carrying larger values of 6 move
faster. Thus, waves can break. If a drop has the shape at t = 0 shown in
Figure la, it will move to the right, with the leading edge becoming steeper,
while the trailing edge becomes shallower. Eventually, in finite time, the
slope will become infinite, and after that, the solution predicted by the
method of characteristics will be multivalued. While a multivalued solution

y - 6(x,t) is not ruled out on physical grounds, it is clear that the
assumption that the vertical length scale is much smaller than the horizontal
length scale is invalid even before the multivalued solution occurs.

As far as the previous approximation is concerned, the steepening leading
edge can be treated as leading to a discontinuity in 6, which we shall call
a shock. At such a discontinuity, the Rankine-Hugonist jump conditions become

6 
3 [dp0

[61 (41)

where U is the speed at which the discontinuity propagates. If the
discontinuity occurs at the leading edge, then [6] - 61, and

62 d

-U- M • 0 (42)3 dx

At the trailing edge, no such jump occurs. Indeed, at the trailing edge,
(dx
-d 0 on characteristics. Thus, the trailing edge does not move.

The evolution of a drop which initially has the shape

S60, 0 < x < L

0, elsewhere

211

5I*-



-00 1

y 
y

(a) 
b)

Y 
y

(c ,  (d)

Figure I. A sequence of drop shapes in streaming flow.
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can be found by the method of characteristics. The solution is shown in

Figure 2. The scale for the time axis depends on the value of a. Note that
the left end smooths out and does not move. The right end remains a jump.
Note that the right end moves more slowly after the arrival of the first
characteristic from the left end.

STAGNATION LINE FLOW

Suppose the external f o0 is a stagnation line flow, with

PO(x) x + Po Then Ox, and d 2p0/dx2 
= 8. The equations valid

on characteristics are

d6 
3

- 8 6- (43)

dx 3
dx -Ox6 . (44)dt

Solving (43) gives

1 (45)

I20
-3t

as long as a - 3 t > 0. Solving (44) gives
2

3/2

At t - 0, the characteristics are at x0 , with 6 = 6(x0 ,0). Therefore

a- 2
6 2 (x0 0)

C = xo63 (xo,O 3/

x or 2/3 x 2/3 62 - t13/2

6- (48)
/_ 1 20

Note that if B < 0, 6 decreases and x on each characteristic spreads
out. If 0 > 0, 6 becomes infinite in finite time, that time being
determined by the maximum value of 6(x ,0). This violates the assumptions

made on the solution, but suggests that impinging stagnation points flatten
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Figure 2. The evolution of a rectangular droplet.
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and spread droplets, but separation stagnation points accumulate droplets and
can remove them from the wll in finite time. Both surface tension and
gravity resist this process.

THE LEADING EDGE

The equations in the drop near the leading edge require a scaling
different from that given by Eq. (9). Both x and y change in a short
distance, which can be taken to be L. The velocity scale is forced to be
U by the outer solution. In addition, the pressure scale in the outer
solution forces us to consider two terms in the pressure expansion. Thus, we
assume

x- x+ CLx"

y - CLy"

dx
u - -+ = Uu"dt

v = Uv"

(49)

C 2 LP 2
CL

5 = £LtS'

t = (C/U)t"

The equations become

au" v" 0  (50)

-- + a" " p 2 2so

€ MUL (au" + _ U h .: + V. au"_ 1 P2 (a 2u" + 2u")(
11 at" au X" ay"  C X" aX" +  . +  

y 2(5

ap" 3p"
£ PUL (av" a" av" 1 1 2 + + a2v" +8v

p at" + u" (5)+ v y -- -- 4 
+  +-2(52)v t xy C ay" '" ax.2 ay"2

where F+ - P -22 . F/C.
ItU

The kinematic boundary condition is
as" as"at- + 

u. L - v" (53)

at y" .
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Thus, to lowest order in C.

p= const , (54)

aP- a2u -32u_
S - + - +(55)

ax x" 2 y"2

0 P2 +
2v_ 32v_

0 - - + - + - (56)
3" ax. ay"2

These are the equations of Stokes' flow.

The boundary condition (4) is satisfied to order c by requiring

P" = p(x+(t),O) (57)

and

0 p n + n • [V"v" + (V"V")T] + o" "n (58)

where

" -_(59)

and

K" 2 2"/3x"2 (60)

(I + 16"/ax")23/2

The boundary conditions at the wall are

V" - 0 (61)

and

-- -U" (62)

at y* - 0. Here X" - X/(CL). The speed U" is the speed of the
discontinuity ..n the outer solution, which depends on the outer time, but is
independent of the inner time t".

The inner problem is thus a steady Stokes' flow problem. Existence of a
stable solution of this problem allows matching to the outer solution.

216

i-



CONCLUSION

Equation (33) describes the evolution of a thin droplet on a flat surface
when viscosity is dominant. The analysis suggests that thin droplets are not
removed from the surface unless the fluid outside the drop separates from the
surface. The analysis gives the rate of spread of a droplet in streaming
flow. The (dimensional) velocity of the fluid at the top of the droplet is
proportional to

I dp0  2

j dx

This velocity scale can be used to obtain a rate of increase of exposed area
of the drop. If the drop can be hydrolized or reacted with some additive in
the outside fluid, the rate of increase of the area can give an estimate of
the time needed for the non-mechanical cleaning of the surface.

REFERENCES

Dussan V., E. B. and Davis, S. H. 1974 On the motion of a fluid-fluid
interface along a solid surface, J. Fluid Mech. 65, 71.

Dussan V., E. B. 1976 The moving contact line: the slip boundary condition,
J. Fluid Mech. 77, 665.

Hocking, L. M. 1981 The motion of a drop on a rigid surface, Proceedings of
the Symposium on Bubbles and Drops, Stanford University, p. 315.

217

S i



CAVITATING FLOW WITH SURFACE TENSION

Jean-Marc Vanden-Broeck
0Department of Mathematics and

Mathematics Research Center
0 University of Wisconsin-Madison

Madison, WI 53706

ABSTRACT. The problem of cavitating flow past a two dimensional curved
obstacle is considered. Surface tension is included in the dynamic boundary
condition. A perturbation solution for small values of the surface tension is
presented. It is found that for most positions of the separation point, the
slope is not continuous at the separation point. The velocity is infinite or
equal to zero there. However, for a given value of the surface tension there
exists a particular position of the separation points for which the slope is
continuous. This solution tends to the classical solution satisfying the
Brillouin-Villat condition as the surface tension tends to zero. Graphs of
the results for the cavitating flow past a circular cylinder are presented.
In addition a numerical sheme based on an integro-differential equation
formulation is derived to solve the problem in the fully nonlinear case.

I. INTRODUCTION. The classical Helmholtz-Kirchhoff solution for
cavitating flow past a flat plate yields infinite curvature of the free
surface at the edges of the plate. Ackerberg [1] attempted to remove this
singularity in the curvature by including surface tension. He constructed an
asymptotic solution for small values of the surface tension in which the slope
and the curvature of the free surface at the edges are both equal to those of
the plate. However his solution contains capillary waves downstream.
Cumberbatch and Norbury [2] observed that these waves are not physically
acceptable because they require a supply of energy from infinity. They
suggested that solutions without waves could be obtained by forcing the slope
of the free surface at the edges to be equal to the slope of the plate and
allowing the curvature to be different from zero at the edges. Although they
obtained a local solution, they did not match it with any outer solution.
Thus they did not obtain a solution with continuous slope at the separation
points.

The problem was sc.ved by Vanden-Broeck [3] who provided conclusive
analytical and numerical evidence that the slope is not continuous at the
separation points. Both velocity and curvature are infinite there. Thus, the
inclusion of surface tension in the Helmholtz-Kirchhoff solution does not
remove the infinite curvature at the separation points. On the contrary it
makes the problem more singular by introducing a discontinuity in slope and
therefore an infinite velocity at these points.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062, Mod. 1 and No. MCS800-1960.
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These results were generalized by Vanden-Broeck (4] to the cavitating
flow past a curved obstacle (see Figure I). The position of the separation
point may be either fixed if it is a pointed corner of the body, or free if it
is at a certain location of a smoothly curved obstacle. An example of fixed
detachment is provided by the cavitating flow past a flat plate in which the
flow leaves the plate at the edges. Similarly the flow sketched in Figure 1
corresponds to fixed detachment if the obstacle is cut along the straight
line AB. In the case of free detachment the classical solution leaves the
position of the separation points A and B undetermined. This degeneracy
is usually resolved by imposing the Brillouin-Villat condition which requires
the curvature of the free surface to be finite at the separation points
(Birkhoff and Zarantonello [51). Vanden-Broeck [4) showed that for most
positions of the separation points, the slope is not continuous at A and B.
The velocity is infinite or equal to zero there. However, for a given value
of the surface tension there exists a particular position of the separation
points A and B for which the slope is continuous at A and B. This
solution tends to the classical solution satisfying the Brillouin-Villat
condition as the surface tension tends to zero.

The problem is formulated in Section II and the classical solution
without surface tension is computed numerically in Section III. The scheme is
similar in philosophy if not in details to the scheme derived by Brodetsky [6]
and later extended by Birkhoff et al. (7,81. Explicit results are presented
for the cavitating flow past a circular cylinder.

The perturbation calculation derived by Vanden-Broeck [4] is described in
Section IV. In Section V the problem is reformulated as a nonlinear singular
integro-differential equation for the unknown shape of the cavity. This
equation was solved numerically by Vanden-Broeck [3] for the cavitating flow
past a flat plate. A discussion of his results is presented in Section VI.

II. FORMULATION AS A BOUNDARY VALUE PROBLEM. We consider the cavitating
flow past a curved obstacle (see Figure 1). We denote by L a typical
dimension of the obstacle. At infinity we have a flow with constant velocity
U. The fluid is assumed to be inviscid and incompressible. We restrict our
attention to obstacles which are symmetrical with respect to the direction of
the velocity at infinity. Flows past nonsymmetrical obstacles can be treated
similarly. It is convenient to introduce dimensionless variables by choosing
L as the unit length and U as the unit velocity.

We introduce the dimensionless potential #b and stream function 4b.
The constant b is chosen such that * = I at the separation points.
Without loss of generality we choose 0 = 0 at x - y = 0. The free surface,
the obstacle and the negative x-axis are portions of the streamline * - 0.

We denote the complex velocity by u - iv and we define the function
- i by the relation

u - iv - e . (2.1)

We shall seek T - iA as an analytic function of f - + i, in the half
plane 4 ( 0. The complex potential plane is sketched in Figure 2. At
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infinity we require the velocity to be unity in the x-direction so that the

function T - i6 vanishes at infinity in view of (2.1).

On the surface of the cavity the Bernoulli equation and the pressure jump
due to surface tension yield

1 2 -TK = 1 U2  (2.2)
q P 2

Here q is the flow speed, K the curvature of the cavity surface counted

positive when the center of curvature lies inside the fluid region, T the

surface tension and p the density. In dimensionless variables this becomes

(see Acl rberg [1] for d~tails)

e T -( - 1), 1 < * < . (2.3)
b a 2

Here a is the Weber number defined by

Q pU2L (2.4)T

The symmetry of the problem and the kinematic condition on the obstacle
yield

6(4) 0, ) = 0, 0 < 0 (2.5)

F[x(=),y(o)] 0, i = 0, 0 < 0 < 1 • (2.6)

Here F(x,y) = 0 is the equation of the shape of the obstacle and the
functions 0(o), x(o) and y(o) denote respectively e(0,0-), x(0,0-) and
y(0,o-).

This completes the formulation of the problem of determining the function
T - i8 and the constant b. For each value of a, T - ie must be analytic
in the half plane * 4 0 and satisfy the boundary conditions (2.3), (2.5) and
(2.6).

III. SOLUTION WITHOUT SURFACE TENSION. When surface tension is
neglected, the Weber number is infinite and the condition (2.3) reduces to the

free-streamline condition T = 0.

We define the new variable t by the transformation

-f (t -) . (3.1)
t 21

The problem in the complex plane t is illustrated in Figure 3. Following
Brodetsky 16] we introduce the function Q'(t) by the relation
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T log1 + t (t) (3.2)
- I -- t

where the angle X is defined in Figure 1. The conditions (2.3) and (2.5)
show that W'(t) can be expressed in the form of a Taylor expansion in odd
powers of t. Hence

k I + A 2n- 1
T - ie = - log 1 -t An (3.3)

n= 1

The function (3.3)satisfiesthe conditions (2.3) and (2.5). The

coefficients An have to be determined to satisfy the condition (2.6) on the

surface A C B of the obstacle. We use the notation t = r e so that

points on A C B are given by r = 1, - 1 ( a -2 . Using (3.1) and (2.1)

we have 
2 2

- = bsin2oe cos 6, p=1, - 04-1 (3.4)
2 2

b sin O eTsin 0, p = 1, - 4 0 4 (3.5)

We solve the problem approximately by truncating the infinite series in
(3.3) after N terms. We find the N coefficients An and the constant
b by a hybrid method involving collocation and finite differences.10
Substituting t = e into (3.3) we have

N

n + A sin[(2n - 1)a) (3.6)

T(O) = - log sina N (3An

w 1 - coo a- A ncos[(2n - 1)0] (.7
n=1

We now introduce the N mesh points

aI , I = ,,,N (3.8)

and the N intermediatr mesh points

a - , ,N. (3.9)

I - FN 2 i

Using (3.4)-(3.7) and (3.9) we obtain r4 and ( ) in terms of
I I

the coefficients A and the constant b. These expressions enable us to
evaluate x(o_) an3 y(o ) by the trapezoidal rule. Then (2.6) provides
N algebraic equations for the N + I unknowns An and b, namely

F[x(O ),Y(Oi] 0, 1 1 ,---,N •(3.10)
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The last equation is obtained by specifying the abscissa w of the separation
point A. Thus

x(- !)= w. (3.11)
2

The system (3.10)-(3.11) is easily solved by Newton's method. Explicit
computations were performed for the cavitating flow past a circular cylinder.
The unit length L was chosen as the radius of the cylinder. The scheme
converges rapidly and the solutions obtained were found to agree with the
numerical results given by Birkhoff and Zarantonello [5].

Profiles of the cavity for various values of the angular position y of

the separation points are presented in Figure 4. For y < y - 556 the free
surface enters the body. These solutions are acceptable if the body is cut

along the straight line AB. For y > y - 1240, the free surfaces cross
over and the corresponding solutions are not physically acceptable.

Physically acceptable solutions for y > y can be obtained by using the
method presented by Vanden-Broeck and Keller [9] to prevent overlapping in
capillary waves of large amplitude. These solutions are found to be the
cusped cavities consider.d before by Southwell and Vaisey [10], Lighthill [11]
and others (see Figure 4). The pressure in the cavity is found as part of the
solution. Similarly in the work of Vanden-Broeck and Keller [9] the pressure
in the trapped bubble was found as part of the solution. As y tends to

y the pressure in the cavity tends to zero. As y tends to 1800 the
cavity shrinks to a point, and the solution reduces to the classical potential
flow past a circle. Thus the family of cusped cavities is the physical

continuation for y > y of the family of open cavities.

The curvature of the free surface in the neighborhood of the separation
point A is given by the formula (Brodetsky [6])

1 38 _ I
1 3c(o - 1) as 0 + 1 (3.12)ba 2

where

Xbl2 1- nl•(313

C = b - - 2 N (-1) (2n - 1)A (3.13)I nn
= 

1

These formula are true for the cavitatinj flow past any curved obstacle.

grdph of C vor:,u the angular position of y of the separation
points for the flow p]st a circul-r cylLnder is shown in Figure 5. The

constant C vanishes for y y . Thus (3.12) shows that the curvature at

the separation .oints is infinite uess y = y. II we impose the Brillouin-
Villat condition, the problem with frte ;ietachment has a unique solution

corresponding to y y*.
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IV. PERTURBATION SOLUTION FOR SMALL VALUES OF THE SURFACE TENSION. We
seek a solution in the vicinity of the separation point A. Following
Ackerberg [1] we introduce the following scalinq of the variables

f = x(bf - b) (4.1)
* * 1/2

T- iS = 1 (U - iS - i + iy) . (4.2)
2

The function T satisfies Laplace's equation in the lower half plane

4 0. Thus

a2* 32* *
-- + - = 0 in ' < 0 (4.3)*2 '¢2

The boundary conditions (2.3) and (2.6) linearize in the limit a + f so that

the boundary conditions on @ 0 are (see Ackerberg [1] for details)

.
3T** *

on i =0 for < 0 (4.4)

aT * * *

-= T on ' = 0 for > 0 (4.5)

Relation (3.12) gives the behavior
. * 1/2 .f

T - Im C(f ) as If* 1 (4.6)

Cumberbatch and Norbury [2) noticed that the problem (4.3)-(4.5) had been
treated by Friedrichs and Levy (12]. The solution of (4.3)-(4.6) not
containing waves and having the weakest singularity at A is given on the
free surface by

C 12 ()/2- C ) (4.7)
2 ~2(w) '/2

* * 1 *
T (@) = -C Ln * (4.8)

2Vw

The loading order terms in (4.7) and (4.8) correspond to flow past a corner of
angle

6 12 "(4.9)

However, the solution (4.7), (4.8) is not valid near * = 1 because t is
unbounded at = 1. Following Vanden-Broeck [3] we seek a local solution
which corresponds to a flow past a corner of angle 6. Thus we write

T _ /(2w-6)-le - E(f - 1) (4.10)

Here E ist constant to be determined as part of the solution. Substituting
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(4.10) into (2.3) we have

3e _b {E(- 1)w/(2w-6)-1 - I(t- 1)1-w/(2 W-6) (4.11)a. 2

Matching (4.11) and (4.7) we find

E = . (4.12)

Thus we have succeeded in matching the solution (4.7), (4.8) with a local
solution corresponding to the flow past a corner of angle 6. In particular
these results imply that

e(1) = - + Y 1/2  (4.13)2 2a

Relation (4.9) shows that 6 > I for C < 0 and 6 < v for C > 0.
Therefore the velocity at the separation points is infinite for C < 0 and
equal to zero for C > 0.

Graphs of 0(1) versus a /2 for the circular cylinder are shown in

Figure 6. The velocity at the separation points is infinite for y < y and

equal to zero for y > y

Although we did only compute an asymptotic solution for a large, we
have every reason to believe that a solution exists for all values of a. As
a tends to zero, the free surfaces must approach two horizontal straight

lines. Therefore

lim 8(1) = 0 . (4.14)

aQO

Providing 0(1) is a continuous function of a, Figure 6 and t4.14) imply

the existence for each value of y < y < 900 of one value of 0 ( a < w for
which e = -- + y. We describe this relation between a and y by the
function

1  2

y - g(a) . (4.15)

This result can be reformulated as follows. For each value of the Weber
number a there exists an angular position y = g(a) of the separation
points for which the flow leaves the obstacle tangentially.

As a tends to zero the free surfaces tend to two horizontal straight
lines. This solution leaves the cylinder tangentially only if y = 90*.
Therefore

lim g(a) = 90 . (4.16)

As a tends to infinity, the solution is described by the asymptotic
solution (4.7) and (4.8). This solution leaves the obstacle tangentially only
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if C = 0 (see formula (4.9)). Therefore Figure 6 implies

lir g(C) = y (4.17)

Q+0

Relation (4.17) shows that the family of solution defined by (4.15) tends
to the classical solution satisfying the Brillouin-Villat condition, as
a + W.

V. REFORMULATION AS AN INTEGRO-DIFFERENTIAL EQUATION. It is convenient
to reformulate the boundary value problem as an integro-differential equation
by considering T - ie. This function is analytic in the half plane * ( 0
and vanishes at infinity. Therefore on * = 0 its real part is the Hilbert
transform of its imaginary part. Thus we have

o) d4' . (5.1)+," _

Here r(o) and 6(o) denote respectively T(4',0-) and 0(o,0-). The
integral in (5.1) is t.- be interpreted in the Cauchy principal value sense.

Substituting (2.5) into (5.1) we obtain

(o) = e() d'. (5.2)

Using (2.1) we have

x(=) b f e cos e do , (5.3)
0

y(o) = b f e- Tsin 0 do . (5.4)
0

Substituting (5.3) and (5.4) into (2.6) yields

F[b f e cos 8 do, b f e sin 0 d#] = 0 • (5.5)
0 0

This completes the formulation of the problem of determining T(+), 8(4)
and b. For each value of a, the functions T(4) and 0(o) and the
constant b must satisfy the integro-differentia. equation defined by (2.3),
(5.2) and (5.5).

VI. NUMERICAL RESULTS FOR CAVITATING FLOW PAST A FLAT PLATE. Vanden-
Broeck (3] derived a numerical scheme to solve the integro-differential
equation defined by (2.3), (5.2) and (5.5). Explicit computations were
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performed fc the cavitating flow past a flat plate. The unit length L was
chosen as the length of the plate.

Typical profiles are shown in Figure 7. We shall denote by eI the
slope of the free surface at the separation point. The numerical values of

1 versus a are shown in Figure 8. The perturbation solution (4.7) yields

1 .1 (1)1/2

The constant C in (6.1) can be evaluated from the classical Helmholtz-
Kirchhoff solution for cavitating flow past a flat plate. Thus we obtain

c= (+ 4) 1/2 . (6.)

The asymptotic solution (6.1), (6.2) is shown in Figure 8. The asymptotic
results and the numerical solution are in good agreement for a large. For

= 130 the value of 61 predicted by (6.1), (6.2) agrees with the
numerical results within one percent. This constitutes an important check on
the validity of the numerical scheme.
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STRESS SOLUTIONS AT BONDLINE-BOUNDARY INTERSECTIONS
0IN COMPOSITE MATERIALS

Oscar L,. Bowie, Colin E. Freese, and Dennis M. Tracey

Mechanics of Materials Division
Army Materials and Mechanics Research Center

Watertown, Massachusetts 02172

ABSTRACT. Various analytical studies ini planar elasticity have shown that the

stress state can be singular at bondline boundary intersections in composite

materials. The singularity has the form r X" f w ith A in the range (0, 1) and

dependent upon the elastic properties of the composite. Here w present an

asymptotic analysis for the case of a bondline which is perpendicular to a trac-

tion free boundary. The analysis applies to any composite consisting of per-

fectly bonded dissimilar isotropic materials. Whereas previous analyses have

limited attention to the characteristic equation for ', we present in addition

the equations for the angular form of the singular field. 1" 4

The practical problem of a bimaterial tension strip which has a singular

elasticity solution was analyzed using the finite element method. Results show

that the free surface singularity strongly infltonces the global solution and

that very accurate solutions can be obtained by using singularity elements.

ASYMPTOTIC ANALYSIS. Here we investigate the form of the stress and displace-

ment fields in the immediate vicinity of a bimaterial free boundary-bondline

intersection. The problem is illustrated in Fig. (1) where the x-axis is trac-

tion free and the materials 1 and 2 are bonded along the positive y-axis. In

the first quadrant, 0 < 0 < ff/2, the shear modulus and Poisson's ratio are

denoted wI and vl, respectively, while in the second quadrant, 7/2 < 6 < v,

they are denoted 2 and v2.

Bogy [1968] treated this problem using the Mellin transform method. Actu-

ally, he considered the more general problem having arbitrary specified traction

acting on the boundary y = 0. He found that for certain bimaterials the dis-
placement components u and u vary as rX and the stress components xx yy

axy vary as rA 1 near the bond-boundary intersection. The exponent A which

defines the strength of singularity depends upon the elastic properties of the

composite.
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In Bogy's work, the transformed field quantities are shown to depend in

common upon a certain function of his transform parameter s. A zero of this

function in a specific range implies that the r , r singularity holds for the

primary (untransformed) field variables. Converting notation, if there is a

root to the following function of A in the range (0, 1), then the power singular-

ity results:

[(k- k2) sin2(X n/
2) k 122 2 sin 2( 7)/4 - k2 A22 = A(A) (1)

k = 2(1'l/112 - 1)

k = (Pl/2 )m2 - m1

k3 = (111 / 2 )m2 + M1

m= 4(1 - v.) plane strain

m. = 4/(l + v.) plane stress

This characteristic equation was derived using the convention that P 1 12 .

Bogy found that the most severe singularity in plane stress occurs when Vl12 = 0

and v1 = 0.5. This is the case of a rigid material bonded to an incompressible

flexible material and then A = 0.689. In the next section we discuss a plane

strain problem for a bimaterial having p1/2 = 1/10 and v1 = V2 = 0.3. For this

composite, eqn. (1) suggests that A = 0.801.

We have found that the complex variable formulation, Muskhelishvili [1953],

offers a relatively straightforward solution to the intersection problem. We

have been able to verify Bogy's characteristic equation and, importantly, have

found the angular form of the singular solution. This result does not appear to

have been previously discussed in the literature.

Using the complex variable formulation, the basic problem is to find the two

analytic stress functions O(z) and ip(z), z = x + i y, which represent the Airy

biharmonic stress function over the domain of iiterest. Each constituent of the

bimaterial must be considered separately, so that in the first quadrant *1 and
govern, while in the second quadrant *2 and iP2 govern. The problem is defined

by the traction free condition on y = 0 and the continuity conditions on x = 0.

If there is in fact a singularity with displacement varying as r , then in each
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constituent the stress functions will have the functional form z near r = 0.

Hence, we will assume that there is a singularity and examine the consequences

of this choice. Introducing the complex constants A1, A2, B1 , and B2 , the stress

functions are taken as
O1= Al z 02 A2 z

(2)
1 0 1 z 2 B B2 z

The integrated traction f = fx + i fy which acts on material to the left of

a bounding arc oz is given by the expression
z

f= (, + z + )o (3)

With point o at the origin and z generic position re , the assumed stress func-

tions (2) imply that over an arc in material j, j = 1, 2:

f = rX (A eixO + AXei(2-A) + B5 e-ix) (4)

The traction free condition implies that f = 0 on both e = 0 and 8 = w. Further-

more, equilibrium demands that f(w/2-) = f(w/2+). Hence, eqn. (4) provides the

following three equations, linear and homogeneous in the constants A., Bj, Aj, B.:

Al + A1 A + B1 = 0

A2 ei2X" + A2  + 2 =0 (S)

(Al - A2) e iAW + (K2 A1 ) ' + 1 - T2 -O

The conditon of displacement continuity across the bondline provides an

additional equa:ion. If U = ux + i uy is the displacement vector at position z,

then

2jAu--,cO- z' -*" (6)

where K = 3 - 4v for plane strain and (3 - v)/(l + v) for plane stress problems.

Since U(n/2-) = U(n/2+), it follows from eqn. (6) that

V 2(KI A1 C i + A -I X -i1 (K2 A2 ei XW + 0 " ) - 0 (7)

Equations (5) and (7) represent a system of eight linear, homogeneous equa-

tions in the eight undetermined real constants Re A., Re Bj, Im A., and Im B. The

solution is the trivial one except when the determinant of the system vanishes.

Hence our choice of the singular forms (2) is valid only when the determinant, a

function of the parameter A, has a zero in the range (0, 1). The expression for
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the determinant therefore serves to define the characteristic equation for X.

With a bit of algebra it can be shown that the determinant is exactly Bogy's

[1968J expression A(X) given above as eqn. (1).

Bogy [1968] and Dundurs [1969] discuss the conditions involving the elastic

constants which result in the r singularity, i.e., a root of A(X) in the range

(0, 1). One case for plane strain which does not have this singular possibility

is when l/U2 = /V. We have not pursued this issue beyond what they have dis-

cussed. Next we consider the angular form of the solution when the r singularity

does in fact apply.

The root of A(X) uefines the coefficients in the 8 x 8 system of linear equa-

tions. Being a homogeneous system, the solution takes the form of an eigenvector

with undetermined magnitude. This eigenvector defines "eigenfunctions" for j,

4p. in eqn. (2). Substituting these results into the expression for the displace-

ment field U, eqn. (6), and the following expressions defining the stress field

gives the angular form of the singularity solution. The general stress equations

in terms of 0 and p are given by

* + (T = 4 Re €xx yy
(8)

* yy - "xx + 2i a = 2(z '' + f')

Substituting the stress functions (2), these stress equations become
(axx + a yy) = 4 rl Re(A X ei(-l)6)

xx yyj 3(9)

(a+ 2i a = 2 rX 1 (A X( - 1)ei(A-3)6 + B. X -e

yy - 'xx xyj - j

where the subscript j indicates either material 1 or 2. To within an undetermined

scaling factor, eqns. (9) represent the complete asymptotic stress solution.

Results for the case P,/P 2 = 1/10, Vl = v2 = 0.3 will be discussed below in con-

junction with finite element predictions.

ANALYSIS OF COMPOSITE TENSION STRIP. A simple, practical problem for which the

above asymptotic analysis has relevance is the bimaterial tension strip shown in

Fig. (2). Near the ends of the strip the stress field will be essentially uni-

axial tension corresponding to the uniform applied stress T. In the vicinity of

the bondline, however, a complicated stress pattern can result from the material

property mismatch. The asymptotic analysis suggests the form of stress distribu-

tion near the free boundary, but, of course, it provides no information about the
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distribution away from the singularity nor about the relationship between the

loading parameter T and the magnitude of stress within the singular zone. We

used the finite element method to determine the plane strain stress field in

the rectangular strip with V 1/112 = 1/10 and v1 = ) 2 = 0.3. The asymptotic char-
-0.19861 2

acteristic equation (1) suggests an r stress variation near the bondline-

boundary intersection for this case.

The mesh that was used is displayed in Fig. (3). Refinements were made near

the bondline and as the intersection point is approached element size decreases

in a polar grid. In total, 19 elements are placed along the bondline. Both

quadrilateral and triangular quadratic isoparametric elements were used in the

mesh. Triangular elements encircle the intersection point. Two analyses were

undertaken. One had isoparametric triangles at the intersection. The other had
0.8014

special singularity elements there with the expected r displacement mode.

The analysis with conventional elements at the intersection served as an

independent check on the asymptotic prediction. Nodal displacement data in the

semicircular region r f 0.06 h centered at the intersection were analyzed for

conformity with a power singularity. Each of the 29 rays of data were treated

separately, and data were converted to polar components ur, ue. The u 0 component

was found to be strongly influenced by rotational distortion so that curve fit-

ting was restricted to u data. A nonlinear least squares algorithm was used tor
fit the form

u = a + b r

The exponent fell in the range .780 < X < .814 in this analysis. This is con-

sidered to be a verification of the existence of the intersection singularity for

our problem. The results for the stress distribution will be presented below

during the discussion of the solution using singularity elements.

The above analysis indicated that the singularity dominates the solution

ovpr a significant distance from the intersection and, furthermore, that the

material mismatch-free boundary produce significant distortion near the inter-

section. Accordingly, we implemented the six node singularity element suggested

by Stern [1979]. This element has the r' mode and also a linear displacement

mode. It is an improvement over the power singularity element suggested by

Tracey and Cook [1977J which does not have the linear mode necessary to model

constant strain and rotation effects. In terms of triangular polar coordinates

, n with E a measure of distance from the singularity and n the angular
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orientation the displacement assumption is

u = (a + b + c & n) + (d + e n + f n2W

The differences in the two finite element solutions were confined to the two

rings of elements nearest the bond-boundary intersection. Nodal stress results

at the mid-sides of the triangles (r = 0.0027 h) are plotted in Figs. (4) and (5)

for both solutions. These results are compared with the asymptotic solution (9)

which is scaled to match the singularity element solution for axx at 6 = w. As

can be seen, the asymptotic and singularity element solutions are in excellent

agreement. 1.e conventional element solution shows deviations of up to 10% in

a and higher tfr the other components.

The stress distribution along the bondline is quite complicated and far from

predictable, as can be seen in Fig. (6). The Oxx component is reasonably uniform

with value approximately equal to T in the strip interior, but at approximately

0.2 h from the boundary 2 t begins to rise to attain the singular gradient. The

shear stress is zero at the center, rises to a value 0.25 T around 0.2 h and

thereupon begins its singular increase as the bobundary is approached. The normal

stress , is discontinuous across the bondline In material 1, which has theyy
,ow sheair modulus, i equals approximately 0.4 T while in material 2 it equalsyy
approximately -0.5 T in the interior of the strip. As the boundary is approached,

the singular forms ire attained and the sign difference is maintained.

CONCLUSIONS. Debonding is a serious problem in structural applications of com-

posites. TIhe solutions in this work suggest that methods of design analysis

might be significantly improved by accounting for free surface singularities.

Linear elastic fracture mechanics suggests an approach. If debonding were cor-

rei:,red on the basis of the singularity amplitude in laboratory tests, then safe

working loads in applications could possibly be established on this basis. Of

coirse, iuticli reains tr, ht dtie. Important questions remain concerning the free

edge effects in 311 cot;ipo.,ites and anisotropic materials.

ACKNOWLi.DGt;.1-N'I. The ;cithors wish to acknowledge valuable discussions with Dr.

Thomas S. Cook concerning the nature of the free surface problem and the status

of the literature in this area.
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THERMO-ELASTIC-PLASTIC ANALYSIS OF A THICK-WALLED
CYLINDER WITH TEMPERATURE-DEPENDENT YIELD STRESS

P. C. T. Chen
US Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. A numerical approach based on the finite difference method and
incremental solution procedure has been developed for analyzing the thermo-
elastic-plastic problem of a thick-walled cylinder with temperature-dependent
yield stress. The cylinder is subjected to a combination of internal pressure
and temperature variation. The material is assumed to obey the von Mises'
yield criterion, the associated flow theory, and the isotropic hardening rule.
Some numerical results for the displacements and stresses are presented.

I. INTRODUCTION. The isothermal elastic-plastic problems of thick-
walled cylinders subjected to mechanical and/or thermal loadings have been
solved by many investigators based on different theories or methods [1-4].
The yield stress in all isothermal theories is assumed to be temperature-
independent. Although good progress has been made recently in developing
constitutive relations for thermo-elastic-plastic and time-dependent inelastic
theories (5,6], the research effort in this area has not reached a state of
completion. In addition, the general solution of thermo-elastic-plastic
problems is still very difficult and frequently very costly (6-8]. As a
result, our research has been directed towards the development of a special
purpose computer program for solving thick-walled cylinder problems of
potential importance to the Army.

This paper shows a numerical approach for analyzing the thermo-elastic-
plastic problems of thick-walled cylinders with temperature-dependent yield
stress. The cylinder is subjected to a combination of internal pressure and
temperature variation. The material is assumed to obey the von Mises' yield
criterion, the associated flow theory, and the isotropic hardening rule. Some
numerical results for the displacements and stresses are presented.

I1. THERMO-ELASTIC-PLASTIC THEORY. For small displacement analysis, the
total strain-rate tensor Ci is composed of corresponding elastic, plastic,
and thermal components as follows

Z -J . ;,Je + ,Jp + ,JT  (1)

The sum of elastic and thermal strain-rates is assumed to be determined by the
Duhamel-Neumann law,

i Je + iJT T E-[(l+v) oij-V6 ij Ok + uT~iJ (2)

win which E is Young's modulus, v is Poisson's ratio, a is the thermal
expansion coefficient, T is the rate of temperature change, 6ij is the
Kroneker delta, and oij is the stress tensor.
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The plastic strain-rate ijP is derivable from the plastic potential

g(aij) by the normality condition

;ijP- a g/ajij (3)

where i is a positive scalar variable.

The yield function for non-isothermal isotropic strain-hardening material
can be written as

F - f(ij) - o (eP,T) (4)

where

cP - f ;P dt (5)

3.
;p (Z £ijP ;ijp)l/2 (6)

2ij

and o(eP,T) represents the dependence of yield stress on the accumulated
increments of effective plastic-strain and temperature. When the von Hises'
yield condition and associated flow rule are adopted,

3
f . g - (Z sij sij)1/ 2  

(7)
and 2

1
sij - - ; -kk 8 ij (8)

On the basis of the above assumptions, we can readily find that

3.
3ijp - 2 (;P/o)sij (9)

and
3 Bij ao.

SP [-- oj - T]/H' (10)
2 a 3T

where

3o WE
H' ..... , E' - 3o/3e (11)

3cP 1-w

av/3T - 3oo/3T + cP(3H'/BT) (12)

* and oo is the initial yield stress.
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Substituting Eqs. (2) and (9) into Eq. (1), one obtains the general
constitutive equations relating iij to aij and T. For numerical solutions by
the finite-element method or the finite-dilfference method, it is desirable to
find the inverse form which relates Oij to eij and T. For the isotropic-
hardening, thermo-elastic-plastic theory, the explicit inverse relationships
can be derived and a form slightly different from 17] is given below:

E v I
oij l- ([6ik 6jl + - 6j 6kl - sijskll~kl

l+v 2V 5

E (a/aT) sij
-- 6ij --- TIT (13)
1-2v I+H'/3G

where

2 I H'
- - 02(1 + - - ) (14)

3 3G

III. EQUATIONS FOR THICK-WALLED CYLINDER. For the isotropic-hardening,
thermo-elastic-plastic thick-walled cylinders, the incremental form of Eq.
(13) reduces to

A i dij Aej - Ao , i - r,e,z (15)

where
E V 1
__ (--- + 6ij - - oi'aj')

dii 1+v I-2v

Ea (o/3T) oi'
Aoi [ 2v AT (16)

1' = -0 Om , am - (Or+Oe+Oz)/ 3

In the quasi-static with no body forces, the radial and tangential stresses
must satisfy the equilibrium equation,

r(aor/3r) - 08 - Or (17)

and the corresponding strains must satisfy the compatibility equation

r(3ce/3r) - cr - 60 (18)

Consider a thick-walled cylinder of inner radius a and external radius b. The
cylinder is subjected to inner pressure and temperature (p and Ta), external
pressure and temperature (a and Tb) and end force (f). The boundary
conditions for the generalized plane-strain conditions are

.r(at) - -p , T(a,t) - Ta (19)

Or(b,t) - -q , T(b,t) - Tb
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2rfb rozdr Uwa 2p + f (21)
a

where V is 0 or I for open-end or closed end conditions, respectively. The
temperature distribution must satisfy the heat conduction equation subjected
to boundary conditions (19) and (20),

1 a aT 1 3T
-- (r -) - (22)
r 3r ar k 3t

where k denotes thermal diffusivity. For the special case of steady state

distribution, the temperature is given by

T - Ta + (Tb-Ta) log(r/a)/log(b/a) (23)

IV. INCREMENTAL FINITE-DIFFERENCE FORMULATIONS. For loading beyond the
elastic limit, an incremental approach of the finite-difference formulation is
used. The cross section of the tube is divided into n rings with rl-a,r2,...,
rk-p,...,rn+l-b, where p is the radius of the elastic-plastic interface. At
the beginning of each increment of loading, the distribution of temperature,
displacements, strains, and stresses is assumed to be known and we want to
determine Au, Acr, Ac8, Acz, AOr, Aoe, Aoz at all grid points for the applied
incremental loading, Ap, Aq, Af, ATi (i - 1 to n+1). Since the incremental
stresses are related to the incremental strains by the incremental form (Eq.
(15)) and Au - rAce, there exists only three unknowns at each station that
have to be determined for each increment of loading. Accounting for the fact
that the axia.'. strain cz is independent of r, the unknown variables in the
present formulation are (Ac8)i, (Acr)i, for i - 1,2,...n,n+l, and Acz.

The equation of equilibrium (17) and the equation of compatbility (18)
are valid for both the elastic and the plastic regions of a thick-walled tube.
The finite-difference forms of these two equations at i - 1,...,n are given
by

cl(Aor)i + c2(A08)i + c3(AOr)i+1 - c5 (24)
and

ci(Ace)i + c2(Acr)i + c3(AC6)i+l - c4 (25)

where

cI- ri+1 - 2ri , c2 - -ri+l + ri , c3 r i

c4 - (ri+1-ri)(cr-ce)i - ri[(ee)i+l - (ee)i]

c5 - (ri+l-ri)(0-or)i - ri[(or)i+l- (0r)i] (26)

Substitution of the incremental stress-strain relations (15) into Eq. (24)
leads to

c6(ace)i + c7(hcr)i + c8(Ac6)i+1 + c9(Acr)i+l + CIO Acz - cil (27)
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where

c6 - cl(dl2)i + c2(d2 2 )i , c8 - e3(dl2)i+l

c7 - cj(dil) i + c2(d21)i , c9 - e3(dll)i+l

01O - el(dl3)i + e2(d23)i + c3(dt3)i+1

ell - cl(hOr°)i + c2(t&Oe*)i + c3(AOro)i+

+ Q2(ur-eO)i + c3l(Or)i - (Or)i+l! (28)

The finite-difference forms of the boundary conditions (19), (20), and (21)

are

(d12)l(A6) 1 + (dlI)l(Asr)1 + (dl3)1 Acz - -Ap + (Acr*)1 (29)

(d12)n+1(A8)n+1 + (dll)n+I(tsr)n+i + (dt3)n+l Acz - -&q + (hcr°)n+1 (30)

and
n

[ 1c1 2'(A68)L + C13(Acr)i + c14'(Ace)i+l + cl5 1 (A r)i+l
i-!

n n
+ cl6')Acz - Oa2 Ap + Af/w + c 1 7 (31)

where

Ari - ri+l - ri , l21 - (Arl)ri(d23)i

cl31- (Ari)ri(d1 3)1  , cl4 - (Ari+L)ri+l(d237i+l

c15 i - (Ari)ri+t(dl3)i
c16 i - (,Ari)ri(d33)h + ri+l(d33)i+lI

c1- (ri)ri(Avz)i + ri+I(Aoz*)il] (32)

Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (Ace)i,
(Ar)i, at i - 1,2,...,,n+1 and Acz . Equations (29), (30), and (31) are
taken as first and last two equations, respectively, and the other 2n
equations are set up at i - 1,2,...,n using equations (25) and (27). The
final system is an unsymamtric matrix of arrow type with the nonzero terms
appearing in the last row and column and others clustered about the main
diagonal, two below and one above.

V. NUMERICAL RESULTS AND DISCUSSIONS. The numerical results for two
particular problems are reported in this paper. The first problem is a
closed-end thick-walled cylinder subjected to varying internal pressure p and
temperature T as shown in Figure 1. The heating is uniform throughout the
thickness but the initial yield stress is temperature-dependent as shown in
Figure 1. The other mterial constants are E - 86,666 psi, V - 0.3, wm 0.0,
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a - 0.0. The numerical results for the radial displacements (ua and ub) at
the inside and outside surface are shown in Figure 2. The percentage of
plastic zone is also shown in the figure by the dotted line. The entire
cylinder is elastic during the time interval 10 to 12. The results for the
three stress components at selected time t - 4, 8, 10, and 13 are shown in
Figures 3 through 5. The differences for the displacements and stresses at
t = 4 and 8 clearly demonstrate the effect of temperature-dependence of the
yield stress. The same problem with plane-strain condition has been solved by
ADINA program 18). For the purpose of comparison, the ADINA results for the
radial displacement at the outside and the residual stress distribution
through the wiall at time T - 10 are also shown in Figures 2 and 4. The agree-
ment is excellent for the stresses and good for the displacement. The small
differences in the displacement response may be due to the end conditions and
the methods of approaches. The numerical results reported here are based on
the finite difference formulations with n - 100.

As a second example let us consider a closed-end tube subjected to inner
temperature Ta only. The numerical results were based on the following
parameters: b - 2", a - 1", n - 100 v - 0.3, E - 30 x 106 psi, W - 0.0, a -

7.75 x 10- 6 in./in./oF, co - 30 x 10i psi, a/ao - 1.0 -T/2 x 10-3/°F. When
the temperature gradient is of sufficient magnitude, yielding will first
expand from the inside. At larger temperature gradient, the plastic zone will
expand from both the inside and outside surface toward the interior. The
relation between the inside temperature and elastic-plastic interface is shown
in Figure 6. The stresses in a closed-end cylinder subjected to temperature
gradient of 400oF are shown in Figure 7. The special case when the yield
stress is assumed to be temperature-independent has been considered in an
earlier paper [4]. For the purpose of comparison, the earlier results are
also shown in Figures 6 and 7 by the dotted lines. A comparison of the
results between the solid and dotted lines shows the effects of temperature-
dependence of the yield stress.

This paper presents the numerical results for a closed-end cylinder
subjected to varying internal pressure and/or temperature. The thermal
problem is due to uniform heating or thermal gradient. If the temperature
distribution is solved by a transit analysis, the corresponding thermal
stresses can be calculated. The result of this transit thermal problem is to
be reported.
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A FUNCTIONAL STRESS INTENSITY APPROACH TO MJLTIPLY CRACKED,
A FUCTINALPARTIALLY AUJTOFRETTMGED CYLINDERS

S Z " a i I r I
U.S. Army Armament Research & Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

MCC)
ABSTRACT. The functional stress intensity approach for a partially

autofrettaged, thick-walled cylinder is presented. This approach is a
combination of a series of methods developed for the computation of stress
intensity factors for multiple radial cracks emanating from the inner or the
outer surface of a hollow cylinder. The numerical method is mainly based on
the finite element method using 12-node quadrilateral, isoparametric elements
with singular elements around a crack tip. The difficulty due to the presence
of initial stresses in the finite element method is obviated by the method of
thermal simulation which replaces the residual stresses existed in an
autofrettaged cylinder by an active thermal load. The weight function method
is incorporated to reduce the repeated computations of stress intensity
factors of the same geometrical configuration subjected to various external
loads and residual stresses. The functional stress intensity factor is
introduced to" overcome the difficulty in seeking the weight function itself.

Numerical results of functional stress intensity factors are given for
multiple cracks radiating from the bore or from the outer surface of a
cylinder having an external diameter twice that of an internal diameter. A
linear superposition of these results gives the resultant stress intensity
factor of a cracked geometry subjected to combined external loads and initial
stresses. It is highly possible to extend the method for elastic perfectly-
plastic materials assumed in this paper to strain hardening materials.

I. INTRODUCTION. An analytic method is not available for the
computation of stress intensity factors for multiple-radial cracks in a
thick-walled cylinder. The computation must depend on various numerical
methods [1-5). Due to increasingly successful applications of finite element
technique in structural analysis, the author decided to use higher order
finite elements with the aid of special crack-tip elements to study the

multiply cracked cylinders. Similar to the quarter-point element in an 8-node
quadrilateral element [6,71, a special crack-tip element was developed [8] for
a 12-node quadrilateral isoparametric element. Both the 8-node and 12-node
quadrilaterals have been implemented in the popular finite element computer
code ASTRAN [8,9]. The dummy user eleme-" facility of NASTRAN is used for
the implementation. Another finite elemenc computer code APES (101, which was
written specifically for the use of 12-node quadrilateral, isoparametric
elements, has also been used for fracture analysis of cracked hollow

cylinders. Quite accurate results of stress intensity factors have been
obtained using either NASTRAN or APES for multiple-radial cracks emanating
from the bore of a tube [111. These results are in good agreement with
results reported by Tracy [12] using the method of modified mapping
collocation.
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To increase the maximum internal pressure a cylinder can contain
elastically and retard the growth of radial cracks near the bore, it is a
common practice to introduce compressive residual stresses near the bore by an
autofrettage process. The residual stress in the cylinder has increased
difficulties in the estimation of stress intensity factors. One of the
difficulties is the disagreement among results for the residual stress
distribution obtained by different investigators based on different
assumptions. The other is the lack of an initial stress analysis capability
in NASTRAN and APES. A method is developed in (13] so that NASTRAN or APES
can be used for the computation of stress intensity factors for cracked
cylinders with residual stress distribution given in the closed form
expressions [14]. The finite element results (151 are in close agreement with
Parker's results [161 using modified mapping collocation.

While the autofrettage process produces favorable compressive residual
stress near the bore, it also yields a tensile residual stress near the outer
cylindrical surface. The sum of this stress and the tensile stress due to a
bore pressure may be high enough to cause crack initiation and propagation
from the outer surface of the cylinder. This requires the computation of
stress intensity factors for externally cracked cylinders. Several
investigators have reported their results on this subject [12,17-19].

In order to reduce repeated finite element computations, the weight
function method [20] is used together with the finite element method. In this
paper the functional stress intensity factor approach is summarized for both
internally cracked and externally cracked, partially autofrettaged,
pressurized thick-walled cylinders.

I. RESIDUAL STRESSES AND THERMAL SIMULATION. The residual stress
distribution in an autofrettaged thick-walled cylinder has been studied by a
large number of investigators. There is considerable disagreement in their
results due to different assumptions which must be made in order to make the
problem mathematically tractable. Detailed discussions of the results and the
associated assumptions are given in (14,21]. Under the combination of
assumptions that the material is incompressible, elastic-perfectly plastic and
obeys the Mises' yield criterion and that the cylinder is under the condition
of plane strain, the following closed form solution for residual stresses is
obtained for an elastically unloaded cylinder after partial autofrettage:

d o r P2  1 1
-{2 log - I + Pl( 1 4 r 4 p (1)

ar(r) - ~o 1i¢ _1at'

(- P0(-o r-) p 4 r 4 b (2)
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0o r p2  1
--{2 log - + 1 + - b + r )} 1 4 r 4 p (3)

08(r) =

0(p2_P1)(_ r2+p b2 r2r
3er p2 P)- + -)p ( r 4 b (4)

where bore radius is taken as unit length, b is the outer radius of the hollow
cylinder, p is the radius of the elastic-plastic interface during pressuriza-
tion, oo is the uniaxial yield stress in tension and compression, and

b 2  p2

P1 = PI(P) bb ( - + 2 log p) (5)

This residual stress distribution will be used in this paper as a basis
to develop a method to compute stress intensity factors for cracks in such a
stress field. It has been shown in [13] that the thermal stresses in the
cylinder subjected to a thermal load

( (T o -T p )

Tr )To -- -log r I1( r •P (6log p
T(r) - (6)

TO  p 4r 4b

are equivalent to the residual stresses (1) - (4) if the temperature gradient
and the yield stress satisfy

Ea(To-T p ) 2o o - (7)
2(1-v)log p f-3

where To and Tp are the temperatures at the bore, and r = p respectively, E is
Young's modulus, and a is the coefficient of linear thermal expansion. This
thermal simulation provides an effective method to compute stress intensity
factors due to initial stresses given by Eqs. (1) through (4) using NASTRAN
or APES. The initial stress is replaced by a temperature input of Eq. (6) at
all nodes. The stress intensity factors obtained from NASTRAN or APES
corresponding to the thermal loads are equivalent to stress intensity factors
due to autofrettage residual stresses [221.

III. WEIGHT FUNCTION AND FUNCTIONAL STRESS INTENSITY. A weight function
is a universal function which depends only on geometry and not on loadings
[20]. If the mode I stress intensity factor K( I) and displacement field u(1)
associated with the symmetric load system I are known, the weight function for
the cracked geometry is
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H 3U( (c)
h =(8)
" 26 1)(c) ac

where H = E for plane stress and H - E/(1-v 2) for plane strain, c is the crack
depth. Once h is determined, the mde I stress intensity factor induced by
any other symmetric load system t and f is given by

K = f (T.h)dr + f (f.h)dA

where _ is the stress vector acting on boundary r around the crack tip and
is the body force in region A defined by r. This equation can be reduced to

H c av(t)
K -- Pc(x) - dx (9)

K(t) o c

for radially cracked rings with x being a distance measured along the crack
from the base toward the tip. The relation between r and x is

I + x , for interior cracks
r(x) - (10)

b - x , for exterior cracks

The crack pressure Pc(x) can be found from the hoop stress (at the site of
radial cracks) in an uncracked ring sub ected to the loading of interest.
Even though the numerical values of 1 1) and vC), the normal component of
displacement, are known, the partial derivative 3v( 1 )/3c is usually unknown.
A technique of computing 3v/3c was devised in [31 by assuming the crack face
displacement v be a conic section given by Orange [23]. Another method
developed in [15] made no assumptions on v or 3v/3c but utilized finite
element method to compute several stress intensity factors each associated
with a simple loading system. For a new load, the new K is expressed in terms
of known values of K.

The hoop stress in an uncracked cylinder subjected to an internal

pressure Pi is

ae(r) 1 b2

Pi b1 r )

Substituting ae from Eq. (11) as Pc in Eq. (9) we have

K(pi) 1 b2

- Wb 2-1 2 +(r -2 )  
(12)

Wwhere
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H c 3v(l)
K1 -- f - dx (L3)

K(1) o 3c

H c av( 1)
(c(r - ) = -f [r(x)]- 2 -- dx (14)

K 0) oc

are called functional stress intensity factors.

Similarly we get

K(p0 )-b () + b  2kc(r-2 ) (15)

Po b2 _1 b 2 _1

K(p-b) I
- {[2 - Pl(b)]Kc(1) - PI(b)Kc(r - 2 ) + 2KC(log r)} (16)

00 /r

for the same cylinder subjected to uniform tension po on outer cylindrical
surface and fully autofrettaged residual stress respectively. In Eq. (16) the
new functional stress intensity factor is

H c 3v(1)
Kc(log r) = - 3 log(r(x)) -- dx (17)

K(1 ) o ax

The finite element results of K(pi)/pi, K(po)/po and K(p-b/o o enable us
to compute the functional stress intensity factors Kc(I), KC(r- ), and Kc(log
r). For the same flawed cylinder with different degree of autofrettage, the
stressses can be computed from one of the following algebraic equations. For
an inner crack with the crack tip rc in the range 1 ( rc ( p, the equation is

K(p) = _ ([2 - Pl(p)]Kc(1) - Pl(p)KC(r- 2 ) + 2Kc(log r)} (18)

O V

For an outer crack with rc in the range p 4 rc 4 b, the equation is

K(p) I [p2 -Pl(p)][b_2 c() + Kc(r 2 )] (19)

00 3

IV. !,r FICATION FORMULAS. For a partially autofrettaged cylinder, let
e be the degree of autofrettage, then e - (p-l)/t where t - b - I is the wall
thickness of the cylinder. When a crack crosses the elastic-plastic interface
r - p, the hoop stress along the crack face must be represented by both Eqs.
(3) and (4). Hence Eqs. (18) and (19) are not valid in such a situation. For
inner cracks, we may use Eq. (18) to compute an approximate value which is
based on the crack face loading of Eq. (3). The error introduced by Eq. (18)
vtcv be corrected by adding the following crack face loading
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r----.

0, 1'r( p

Pc(r) =
100 0o r p2  1 1-- (P 2-p1)(__ +_ - {2 log - + 1+ -PI(7+ r-2) p r, rc

(20)

where rc is the radius of the crack tip. Substituting from the above into Eq.

(9), we should be able to obtain a correction stress intensity factor Ka if
av/3c is known. Assume the crack tip crosses the elastic-plastic interface
only slightly, the Westergaard near field solution for v in terms of crack-tip
stress intensity factor Kk1 ) can be approximately used to find 3v/3c. Let
be'a length measured from the crack tip and be defined by

-- (X-C) (21)

then
2(1) 2

v(M = K - (_2 / (22)
H w

and
av K(1  2 1 1
- ()1/2 (_-- + - E) (23)3c H i ,' c

The approximate correction factor K4 obtained by termwise integration of Eq.
(9) using Eqs. (20) and (23) is given by

K I ~- 2Tw {-1 + 2 log p)(I1 + I1') + p2(12 + 12') )2(3 + 13')) (24)

Using 6t = Irc-pI, the abbreviations in Eq. (24) are:

I 1 - 2I" , I l ' = - (6t) 3 / 2  
(25)

3c

t (+c) - 1 / 2

12 -- [ log D(p)]
1+c P 2

(26)
1 /i (1+c) "1"2

12' - rat + - log D(p)]
c p 2
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13 - -2[(2-log p)/-t + (1+c).1/2 log
[i-? +

(27)
2

3' 2- [ / -E (t log p - 2(1+c) - 26t/3) - (1+c)3/2 log D(p)]
3c

with

D(p) - [2(1+c) - p - 2/6t(I+c)]/p (28)

The sum of K6/ao from Eq. (24) and K(p)/o from Eq. (18) usually gives a
better approximation of crack-tip stress intensity factors when 6 - Irc-P /t
is small. Since the correction formula K/ao is not a function of N, the
number of cracks, it works for small N and 6. But when N is large, the crack
interaction is strong, 6 must be small.

A similar formula can be found for exterior cracks crossing the elastic-
plastic interface from elastic into plastic region.

S()1/2{(1-2 log p)(Jl+J1
9 ) p2(J2+J2') + 2(J3+J3 ')) (29)

o 3w
0

where

2
J - 2/6 , Jl' - - (6t) 3 / 2  (30)

3c

J2 - [- + rc-1/2 tan- Trc] (31)
rc P

J2' - - - + re - 1 / 2 tan-'1 t/r-c (32)
c P

J3 - 2[(-2+log p)E/ + 2/rc tan-46t/rcj (33)
2 2

J3 2 [(6t) 3/21og p + 2 (3rc-6t)VTt- - 2rc 3/2 tan-1vtrc] (34)
3c 3

Adding K6/ao of Eq. (29) to K(p) of Eq. (19), the result is the corrected
crack-tip stress intensity factors for exterior cracks.
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V. NUMERICAL RESULTS AND CONCLUSIONS. Extensive numerical results are

obtained for a cylinder of b - 2 which is a commonly used value in cannon
design. A typical finite element idealization is shown in Figure 1 for inner

radial cracks. Slight modifications in element meshes are needed for exterior

cracks. In Figure 1 the elements surrounding the crack-tip are enriched
elements [101. If collapsed singular elements are to be used, we can simply
replace the enriched quadrilaterals by collapsed quadrilateral elements
(triangular elements) with proper shifting of side nodes to new locations.

Similar accuracy is achieved using either enriched or collapsed

quadrilaterals. Stress intensity factors for internal cracks are given in
Table I of reference [15] for three different types of loadings. Using these

results and using Eqs. (12), (15), and (16), we obtain functional stress

intensity factors for internal cracks. Figure 2 shows stress intensity
factors as a function of c/t for various numbers of internal cracks in a fully
autofrettaged cylinder. Figures 3, 4, and 5 are similar graphs of functional
stress intensity factors. Corresponding graphs for external cracks are shown
in Figures 6 through 9.

Readings taken from Figures 3, 4, and 5 are enough for an estimate of
stress intensity factor for internally cracked cylinders with any assigned
values of N and c/t for any combination of pi and residual stresses
corresponding to a given e. If crack tips cross the elastic-plastic
interface, then correction formula (24) should be used. As an example, if the
stress intensity factor is desired for N - 2, c/t = 0.3 in a 25 percent
autofrettaged cylinder, we first take readings: _(1)/A/c - 1.41 from Figure
3; Kc(r- 2 )/vGic = 1.05 from Figure 4; KC(log r)/AWic- 0.22 from Figure 5, then
Kc(c.O.25)/O0/ c - -0.12 is computed from Eq. (18). Since r - 1.3 is greater
than P - 1.25, the correction stress intensity factor K4/Ooo/ - -0.023 is
obtained from Eq. (24). The sum of Eqs. (18) and (24) gives K/Covwc - -0.143.
To check this result, a finite element computation of this case is performed.

The result is also -0.143. For externally cracked cylinders, Eq. (19)

involves only two functional stress intensity factors. Therefore, only
Figures 7 and 8 are needed. For example, given N - 4, readings taken from
Figure 7 are Kc() /Iwc - 1.12 and 1.18 for c/t = 0.2 and 0.3 respectively.

Readings are Kc(r- )/i/wc - 0.32 for c/t - 0.2 and 0.36 for c/t - 0.3 from
Figure 8. Stress intensity factors for e - 0.8 can be computed from Eq. (19).
It gives K(e=0.8)/aoV/ c - 0.492 and 0.537 for c/t - 0.2 and 0.3 respectively.
For c/t - 0.3, the correction formula (29) must be used. The result is
4 /oolw/c - -0.05. The final result for c/t - 0.3 is K(e-0.8)/a o - 0.487 which
is close to the result of 0.486 obtained directly from a finite element

computation.

For a combination of residual stresses and internal pressure, the stress
intensity factor is simply an algebraic sum. Stress intensity factors

normalized by aco wfc are shown in Figure 10 as a function of N for internal
cracks subjected to several selected values of pi and e. Figure 11 is a
similar graph for external cracks.

The functional stress intensity factors are used to obviate the
difficulty in finding the weight function itself. The approach is the result
of a series of methods developed for multiply cracked cylinders. The
extension of the method to residual stress distribution other than that given
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by Eqs. (1) through (4) is highly possible.

From numerical results, the stress intensity factor is largest for N = 2

for various combinations of residual stresses and internal pressures for both

interior and exterior cracks. The stress intensity factor is monotonically

decreasing as the number of cracks increases from N - 2.
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CRACK TIP

4 Figure l(b). Idealization for very shallow cracks.
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F gure 2. Stress intensity factor as a function of c/t for N ID
cracks in a fully autofrettaged cylinder of b/a 2.
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Figure 7. Kc(p)/pv/c as a function of cit for N external radial cracks
with constant crack face loading.
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F~igure 9. Kc/p/w- vs. cit for N external radial cracks with crack face
loading pc(x) plog(b-x).

281



II II _4

'tn

I/ I GJ0

/ II .

0 to 0)

* I 0." -

I N :NIc
/ I .

'I 0IO 0 0u cot 4. w/I I I 0 <0
W ItU 4

/4 1

'-4.0
/ /

/ )I 
U )
t -

;*.4 0 4

'40 0

, /

,,I, / 00 c0

VA14

6L

282



K

cit 0.2
I.0

0.5- 0.3 -

0.3

C = 1.0

. . . . - 0.6

0-

5 10 15 20

Figure 11. K/OoAw/c for N radial cracks at outer surface of a cylinder of

b/a a 2 subjected to combined internal pressure pi = co/f,
where f = 1.S except otherwise indicated, and residual
stresses corresponding to given degrees of autofrettage e.
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TWO-PHASE FLOW OF LIQUID PROPELLANT GUNS BY SPACE MEAN APPROACH

0

~m4 R~dYalamanchili
Armament Division

Fire Control Small Caliber Weapon Systems Laboratory
ARRADCOM, Dover, NJ 07801

ABSTRACT

Liquid propellants have many potential advantages over solid
propellants for use in guns, including elimination of cartridge
cases, reduced gun tube erosion, and higher muzzle velocities.
However, in the past, nonreproducibility of ballistics was the
main obstacle. An accurate mathematical model is essential to
characterize and predict the interior ballistics of a liquid
propellant gun in order to overcome this obstacle. A regenera-
tive injection model is considered where the force derived from
the combustion of a small portion of the propellant and differ-
ential-area piston is utilized to inject the main charge into
the chamber. The model involves a compressible liquid, injec-
tion fluid mechanics and the burning rate of propellant in addi-
tion to an imperfect gas law. The continuity, momentum and energy
equations are utilized in addition to two moving boundary condi-
tions which are formulated by Newton's law. These are solved by
numerical integration and digital computers. Model capability
includes not only conventional interior ballistics results but
also the rate of propellant injection, the rate of propellant com-
bustion as well as propellant distribution inside the chamber.

I. INTRODUCTION.

Basically, there are three types of liquid propellant guns.
Most of the attention, so far, was placed on the bulk loaded gun.
Very little literature exists on regenerative liquid propellant
gun systems. At present, work is in progress on all systems,
theoretically and experimentally. However, this paper is re-
stricted to the regenerative liquid propellant gun. Undoubtedly,
there are some disadvantages over solid propellant guns. However,
the advantages such as elimination of the cartridge case and
higher performance outweigh the disadvantages and deserves ex-
tensive efforts to develop a successful weapon system.
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II. PHYSICAL MODEL.

The schematic of a regenerative liquid propellant system is
shown in Figure 1. A monopropellant which contains both fuel and
oxidant is considered because of simplicity. A differential pis-
ton is used, i.e., the area of a piston facing the projectile is
much larger than the area of a piston facing the propellant.
Therefore, there is a net force acting in a rearward direction
even if the pressure is the same on both sides. A small amount
of monopropellant is injected into the region between the bolt
and the piston head and the inlet and orifices which are located
in the piston head are sealed off. An electric primer is intro-
duced into the combustion chamber between the piston head and
the projectile. The primer gases push the piston rearward.
The liquid propellant is compressed and higher liquid pressures
are generated. This high pressure liquid propellant is injected
into the combustion chamber through the injectors. Some of the
injected propellant, which is in the form of a spray, is burned
and high pressures are generated.

III. MATHEMATICAL MODEL.

The physical phenomena in a regenerative liquid propellant
system is quite complex. The problem is an unsteady, two-phase
and three-dimensional flow in a highly reactive environment.
This is further complicated by the. unknown moving boundary
conditions. The kinetics of the propellant decomposition is
currently unknown. The regenerative liquid propellant problem
is complex. due to. unsteady environment and interaction between
numerous complex droplets of varying sizes and shapes. There-
fore, a practical minded approach is considered as a first cut.
There is plenty of scope for future improvement in the modeling
process. A transient one-dimensional approach fits this cate-
gory. The governing equations are a system of nonlinear par-
tial differential equations due to the use of space (x) and time
(t) as independent variables. Such a model is under development.
The method of characteristics is chosen to reduce, by one, the
number of independent variables. The model will be validated
and modified as more experimental data becomes available.

The dependent variables change drastically with respect to
tine when compared to the space coordinate. Moreover, a one-
dimensional approach is utilized as a starting point. One may
be able to obtain meaningful results by utilization of space
mean quantities. There is no loss of accuracy in calculation of
space mean quantities rather than a transient one-dimensional
approach. The only loss is that their variation with respect
to the space coordinate is unknown. However, one may be able to
obtain the sane, approximately in conjunction with semi-empirical
theories. Therefore, the space mean approach is chosen for this
paper.
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In the model it is assumed that a primer of known charge
(Ci), force (Fi), and adiabatic flame temperature (Ti) is
present in the combustion chamber, between the piston head
and the projectile base. On electric ignition, the primer pro-
duces pressure which moves the piston to the propellant
reservoir. The liquid monopropellant inside the reservoir
chamber (between the bolt and the piston head) is compressed
which inturn generates higher pressures. The pressure dif-
fezence across the piston head causes an injection of liquid
propellant into the combustion chamber (hot gas combustion
zone) through injectors/orifices. If an incompressible assump-
tion for liquid monopropellant is invoked, the rate of propel-
lant discharge (M) can be represented by:

dM (Az - d (1)
t i z

P% - density of liquid propellant

where A z cross sectionalarea of piston head

A R cross sectional area of piston rod

z - position of piston

t time

This equation is based on the condition that the volume dis-
placed by the piston must be equal to the volume of propellant
discharged into the combustion chamber.

It is assumed that the pressures inside the liquid propel-
lant is similar to those observed in a conventional gun. An
incompressible liquid assumption may not be a good idea at
higher pressures. The following equations may be derived for a
compressible fluid:

dK (2)
dt CdPlAhVZ

/2gj P -(3)

where Cd - discharge coefficient

Ah  a area of the injector/orifice

Pt - liquid pressure inside the reservoir
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p a pressure in the combustion chamber at piston
z base

a gravitational constant
- velocity of fluid at piston base

The coefficient of discharge is a ratio between actual
flow and theoretical flow. This value varies between 0 and 1
and is determined empirically. For example, one can introduce
the discharge coefficient as a function of Reynold's number.

The piston motion may be described as Newton's second law
of motion. The forces acting on the piston in the axial direc-
tion are pressure forces and the thrust produced by the action
of a jet/spray. The resulting equation for piston motion be-
comes:

W dV
di P -PA- (A -AR + (4)V2/
dt z z 1~( A(4)A~~

dz
dt z (5)

where W - weight of pistonP

V - velocity of piston

The liquid propellant pressure variation with respect to
chamber pressure may be expressed mathematically by the use of
the definition of bulk modulus (a) and control volume concepts:

dP L Uadt- " [(A - R)vz - CdAhVt] (6)

The rate of change of volume of liquid propellant (Ut)
inside the reservior can be expressed as

dU

dt (Az - AR)Vz (7)

The mathematical definition of bulk modulus of a liquid
may be stated as

ap2
8 -u-- (8)
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In general, the bulk modulus of a liquid varies with
respect to pressure and temperature.

The temperature of a liquid does not vary much during the
firing of a single round. However, the pressure of liquid
propellant in the reservoir varies drastically as gas pressure
in the chamber is increased. Therefore, at least first order
corrections are taken into account by using the bulk modulus
of a liquid as expressed in the following expression:

= a + bPt (9)

Where a and b are constants determined experimentally. len
though, the temperature of a liquid may not change much duri
firing of any one shot, the liquid propellant density varies;
contrary to the general notion that liquids are imcompressib
this yariation is due to the extremes of chamber
pressure. The rate of change of liquid propellant density,
based on the definition of density, is formulated as

(M°0 - M)(A - AR) PICdAhVt
U° - (Az - AR)Vz] Vz - 0 - (Az - AR)z (10)

Where Mo a initial amount of liquid propellant in the reservoir.
and U o = initial volume of liquid propellant reservoir.

The derivation of the governing equations forith*-parameters
associated with the liquid propellant reservoir is complete. Now,
consider the dynamics inside the combustion chamber. The amount
of propellant injected is expressed by equations (1) or (2) and
(3). These equations do not consider the injection form (spray
etc.) The injection of a jet or spray depends :pon the design
of the nozzle, properties of liquid propellant, properties of
the surrounding gaseous medium, discharge velocity, and so forth.
Usually, based on the present injectors, different sizes of drop-
lets are possible. In this case, statistical distribution of
droplets is useful. However, a mean droplet size has been chosen
for the present study. There is no satisfactory theory for drop-
let size prediction. Therefore, an empirical derivation, based
on Adelberg, is utilized in the initial portion of firing cycle.

D o,- CDh (11)

where Di - mean diameter of liquid propellant droplet

C a empirical constant, function of injector and
propellant properties

h - diameter of injector-tip/orifice
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It is not uncommon to utilize the Weber number criteria
for droplet size prediction. The Weber number (We) is defined
as

We = (AV)2D (12)2a

where p = density of hot propellant gas

AV = relative velocity between the gas and liquid
droplets

a = surface tension of liquid propellant

The number of droplets is determined from the mass of
liquid propellant injected and the mass of a single droplet
based on the previous equations. Further, droplets may break
up to smaller sizes. In the model, droplets are allowed to
break-up based on Weber number criteria. The Weber number
criteria is 6 for low viscosity fluid and 10 for a high vis-
cosity fluid. If the Weber number, at any time, exceeds these
values then they are allowed to split-up. The spherical
shapes are assumed and maintained during the combustion phase.
The solid propellant type of burning rate is assumed, similar
to BRL, but with different coefficients and exponents. The
resulting equations for the Weber number less than the
critical Weber number are as follows:

dm d6

d= BPn  (14)
dt

where m = mass of propellant converted to gas

s = total surface area of all droplets

6 a distance burned normal to the surface

P = mean chamber pressure

B = coefficient in linear burning law

n x exponent in pressure dependent burning law

291

F- ,



If the Weber number is greater than the critical Weber number,
then the number and size of existing are modified and the
newly injected droplets are allowed to be smaller in size:

dind CdP AhV (15)

The free volume available in the chamber for gas molecules can
be calculated based on control volume concepts. The free volume
(U) is defined by equation (16).

U = 0 + A z + Ay M -rn m (16)
0 Z

dU z p2 M-m dp1 1dM di din
d A !L A + -(- d t~ d (17d t zdt dt P= i) - (d7

where A = cross sectional area at the projectile base

Y - location of projectile

= covolume

The relation for propellant gas density (p) can be
developed based on the definition of density. That is

- 1 dm m dU
dt U dt i- (18)

The equation of state can be used to determine the mean
pressure (P) in the combustion chamber.

mF T CF T(19)U T U T

where F = force of the liquid propellant

To - adiabatic flame temperature

T a mean propellant gas temperature in the combustion
chamber.
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The rate of change of mean combustion chamber pressure can
be given as

dP F indm dT FdU iCi 1 dT T dU (20)
-it -VR Tit - MT-j + ItT i- - (2 0)l

0

The propellant gas (mean) temperature (T) can be determined
from the conservation of energy equation which states as follows:

Energy released by the burning fuel (Q) equals the sum of
the following quantities: interval energy of propellant gases,
kinetic energy of propellant gases, kinetic energy of projectile,
work done on piston, heat lost to gun tube and energy loss due
to projectile friction.

T

Q T 0 CgdT - mfI C dT + KE +
vJ V 0 v gas 2g B

(21)

tA2T 0  W
+ f(PzAz +gZ )dz + cm C dT + 6 B VB

Rere, some empirical information based on existing practices
and experience is utilized. For example, the heat lost to the
gun tube is approximated as a fraction (c) of the energy released
by the burned propellant. Similarly, the energy lost due to
projectile friction is estimated as fraction (a) of the kinetic
energy of the projectile. The KE gas represents the kinetic
energy of propellant gases and WB is the weight of the projectile.
Therefore, the propellant gas (mean) temperature (T) can be
written as:

w

C P n+Cy)~Fdz) +0)-*
C +as B (22)

MF + ( iF
(y - 1)T 0 (y - 1) T

dT _- (F + CF) + Fdz + KE + (1 + 0)2 V2).
dt Y~*(n ii Jz gas 2& B

Fd,/dt 1c. dm d! Fzd z  (23)
CFmdT +7 - ) dt znF Cii 3

- ToY _)T+ Cy- 1)Ti

W dV(KE CUF I
-(KEgas)-(l + Be -(y- (+ 1)Ti
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F P PA +thV (24)
z z z g

where

Y a ratio of specific heats of propellant gases.

Finally, the projectile motion can be represented based on

Newton's second law of motion:

dVB A& ( pr) (25)
di W 3 S r

d.. VB (26)

where VB = velocity of projectile

PS = propellant gas pressure at the base of the projectile

Pr a resistive pressure due to friction between projectile
and gun tube and also due to air resistance ahead of
projectile.

IV. CONCLUSIONS.

In closure, the coefficients and exponents in the burning
rate equations are approximated as

B = 0.04, n a 0.75 3.5HP < P - 17.2MP
B - 0.011, n- 1.27 52MP < P < 207HP

It is assumed that there is a linear gas velocity gradient between
the piston and the projectile. This has been shown to be a good
approximation. As a matter of fact, it is 4uch better than the
uniform density approximation used by others.

2
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The gas density is allowed to vary linearly between the piston
and the projectile. The (transient one-dimensional) partial
differential equation of motion is integrated with appropriate
boundary conditions, to yield the pressures at the base of the
projectile and also at the piston head. The liquid propellant
droplets locations (XD) are determined by utilizing standard
aerodynamic laws based on spherical shapes and the relative
velocity between droplet and surrounding gases. In all, there
are 15 coupled ordinary differential equations solved by numeri-
cal integration techniques. The unknown's are M, m, pV, P, V,

Vz , z,,P, T, p, VB1 Y, Pz' PS9 XD S, and U. The pre-

liminary results indicate that there is a difference between
theoretical results and experimental results. These differences
can be eliminated by altering the model. This can be easily
done because both the experimental results and the analytical
results have similar trends.
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Calculation of Legendre Functions on the Cut for Integral Order
0and Complex Degree by Means of Gauss Continued Fractions

Alexander S. Elder
James N. Walbert

0Eric C. Benck
Ballistic Research Laboratory, USAARRADCOM

Aberdeen Proving Ground, MD 21005

ABSTRACT These functions are required for the calculation of biorthogonal

functions for the hollow cone as required for solving problems in elasticity *.."

and rheology. One form of the biorthogonal function is L

x - [AP (cos 6) + BQ4(cos e) + CP_'2(cos 6) + DQ _2Ccos 0)] Rvsin m4.

The function is obtained by calculating F(-v, v+1; 14%+X; (1-x)/2) and

F(-v, v+1; 2+m+1; (1-x)/2) where I is a sufficiently large integer and x =

cosO . The hypergeometric functions F(-v, v+1; 1+m; (I-x)/2) and

F(-v, v+i; 2+m; (1-x)/2) are obtained by recursion.

The Legendre functions P-P (cos6) and P-4 (cose), are obtained from

standard series taking p>> lvi 3/2 to reduce round-off error. Legendre

functions for smaller values of p are obtained by recursion. We use the

recursion formulas for the hypergeometric function rather than the formulas

for the Legendre functions to reduce the exponent range of the calculations.

Finally, P (cos8) is calculated from standard formulas.
V

The quotient Q4 (cosO + i0)/Qp (oO + iO) can be obtained from the

Gauss continued fraction for

F(1/2 + U, I+) + U; v + 3/2; ;218 )/F(1/2 + V, v + v; v + 1/2; -2'6

The individual functions Q4 (cosO + i0) and Q4 (cosO+iO) are obtained from a
T i iv-

Wronskian relation and the functions of the first kind previously

calculated. Then QV (cos8) and Q , (cose) can be obtained from standard

formulas. Use of complex variables is essential to obtain a rapidly

convergent Gauss continLed fraction. This algorithm has been programmed in

CDC double precision arithmetic. This program is intended only for moderate
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values of p and IvI. The logarithmic solution has also been programed.

I. INTRODUTION: e associated Legendre functions on the cut for

integral order and complex degree are required for several important

mechanical applications. One area of particular interest is in the

calculation of biharmonic functions for the hollow cone. Such functions

appropriate for the cone satisfy

C - o 1

and come in the form

x-[AP"'(cose) + BQm(cose) + CPm 2 (Cos$) + DQ3  (cose)] R V sin *

These functions are required for stress analysis in the minihat gage, which is

a strain-type pressure transducer, and in cone-plate rheometers.

We have developed a subroutine for computing

P (cose) and Q ¢cose)

for

o<e( 90o

integer m such that 04m<12

and v such that Re(v)- -V2

For moderate values of IvI, we calculate P(cos8) by series and recurrence
formulas. On the other hand, QV(cose) is computed through the use of a Gauss

continued fraction and Wronskian relations. For small angles, the logarithmic

solution is used to calculated Q (cose). Additional analysis will be

a((cose) aP(cose)
necessary for the programming of Tv and 3V * Asymptotic

expansions are required when IvI is large.

Programming was done on a CDC 7600 computer in FORTRAN V. CDC double
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precision arithmetic was used to get the greatest accuracy possible. Special

multiple precision algorithms were avoided so that the programs would be more

compatible for use by an engineering laboratory.

11. ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST KIND. The Legendre

functions of the first kind can be accurately calculated for moderate lvi by

P -M (osa) - (tan 6/2)m2F (-V,v+1;1+m;(sine/2) 2  (1)

V ml 21 ''

and the reflection formula

S(-1) r(v+m+1) P (cosa) (2)
V ~ rcv-m+i)v

where

r(v+m+1) (a
- (v+l-m)(v+2-m)...(v m). (2a)r(v-m+l)

The hypergeometric series, for smalliv (Ivl<2) , can be calculated

directly from the series

ab z a(a+l)b(b+l) 
(

2F (a,b;c;z) - 1 + 7- + -c(cl 2--- + .. .(3)

For larger values of lvi , the series becomes slowly convergent with serious

round-off error. In this case, one can alter the parameters and then use a

recurrence formula to obtain the desired results.

One possible method to improve the convergence of the hypergeometric

series would be to increase m to a high value and then use a Legendre

recurrence formula to obtain the desired answer. Unfortunately, either

serious underflow or overflow problems would begin to occur in the calculation

of the initial values for the Legendre recurrence formula, as found by Smith,

Olver, and Lozier.4 Occasionally both underflow and overflow occur in the

same sequence of calculations. The necessary recurrence formula,

*Series and Recurrence relations are obtained from references [1],[21,[3].
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r 1(cose) + 2mcotP?(coso) + (v+m)(V-m+1)Pm-,(cose) - 0, (4)

also contains both linear and quadratic coefficients which would lead to rapid

variations of the Legendre functions in a recurrence chain.

In order to avoid the difficulties in dealing with the Legendre function,

we deal directly with the hypergeometric series using the Gauss contiguous

formulas. In the required Gauss contiguous formula,

c(c-1)(z-i)F(a,b;c-;z)+c[c-l-(2c-a-b-)z]F(a,b;c;z)

+(c-a)(c-b)z F(a,b;c+1;z)-O , (5)

the coefficients of the hypergeometric functions are of the same degree in the

padrameter c. Therefore, the values of the hypergeometric functions vary

slowly as the parameters change in the recurrence chain. Also, the stability

criterion for the Gauss contiguous formulas can be verified by elementary

methods. Finally, through the use of the hypergeometric functions as the

basis of our analysis, we gain an additional parameter leading to greater

flexibility in deriving algorithms.

Since the Gauss contiguous formula appears to be superior for the

intended work, it is used in the program. We increase c to a sufficiently

large value and then increment downwards with the Gauss contiguous formula to

the desired result. Using this technique has produced excellent results,

provided that lvj is not too large.

III. ASSOCIATED LEGENDRE FUNCTIONS OF THE SECOND KIND; GAUSS CONTINUED
FRACTION METHOD In attempting to calculate Q(cos9), no series was found

which converges well for small v and 0. Instead, an approach previously used

to calculate Bessel functions of the second kind was used. 5 This approach

utilizes the Gauss continued fraction and Wronskian relations. It was found

to be highly advantageous to leave the cut for the initial calculations and

work in the complex plane. However, Qm(cos8), as defined on the cut -l<x<+l,

is not analytic when x-z, a complex number. We have the formula
3
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Q (x) - 1 2 e-imv[e-'/2i (x+iO)+e/2iwQ (x-iO)] (6)

where x+iO, x-iO indicate limits as the complex variable z approaches the

cut. If v - a+iB, and B is large

QP(cos+iO) is 
O(e

- )

and

Qr(cosO-iO) is O(e +B), where x - cose.

This behavior corresponds to that of Hankel functions in the theory of Bessel

functions.

In the complex plane, we have

eim QV (cose+iO)r(v+3/2)-i 2 r ev-ln+l)e/2m (2sin8)m

(7)

x e-ie(l+v+m) F(I /24m, 1+v+m; v+3/2; e-2ie).

Replacing v by v-i and then dividing the result into the previous equation,

Q (cose+io) M (V) e-ie F( 1/7+ m,1+v+;v3/2; e-2ie)

c i =@ 1(cose+iO) (v+1/2 ) F( 1/2 +m, v; v+ 1/2 ;e- 2i16 (8)

Letting a-V 2 +m,b-vfm,c=v+ 1/2 ,z-e-21e

R(cose+iO) b e- ie F(a,b+l; c+li z) (9)
V c F(a, b; c; z)

This can be calculated by using the Gauss continued fraction
6
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F(a, b+l;c+l;z) 1
F(a,b;c;z) 1 - b

1 - (b+l)(c-a+l)z
(c+l)(c+2)
1 - (a+l)(c-b+l)z

(c+2)(c+3)
I - (b+2)(c-a+2)z

(c+3)(c+4)
1 - ..

The Gauss continued fraction converges everywhere in the complex plane, except

on the real axis from +1 to + -. and at isolated zeros of F(a,b;c;z).

In order to obtain Qm(cose+iO) from its continued fraction, we utilize

the following Wronskian relations:

dQ mz) dP-M (z)
(z)Q(z ) " dz Q (z) dz (11)

and

lii
W-P'(z), --(z) -e 2

(1-z2)

Equating these, we have

-( dQ(z) m dPT (z) eiW(2P( z )  -dz Qv( z )  
d-z- (Iz 2 )-z v dz(12)

Now using the derivative relations

dp- z)
(z 2 _1) V Pvz) (v-r) p (13)dz V z - vI(z)

and

w3

(z 2_ dQ(z) m1) dz V z Qv(z) - (v+m) Q l(z)
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we f ind

( gM ( ) dZ 1 (Z) - (v-rn) (z) Qm (z) e (14)

Divdin boh sdesby (z) and replacing z by cose+iO ,we get

iurn

(VM i-'(cOos ) - (v-ta) (Cose-liO) Re(cose+iO) e_ 15) -

Replacing v by v1- and then solving for Q M(cose+iO)
V

iinn
Q m(coso+iO) -e

V[Cv+i) _m (cose+i0)-(v-+) -(cose+io) m(os~o

(16)

Since

Q M (cos+iO) '/2 imir

[((v4H+i)P Ccose)-(v-m+1)p m(cose)R7 csV.1- v v+,(os+iO)] (18)

Now we can use the relation

Q a(cosO) -e 3 /2 im eCcosB+iO) + iir/2 PVTcosO) (19)

w * to finally get
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QmCMos) = (-1) + iw/2 Pm(cos8).
[(V4m+l)P (cosO)-(V-m+1)P Ccos6)R (cos8+i°)] (20)

Results from programming the above method indicate that it works

exceptionally well. Unfortunately, this method will likely run into

difficulties for large IvI. Even though the Gauss continued fraction seems to

converge more rapidly with increasing lvi, difficulties may be encountered

because of losses in accuracy with P M(cosO). For large IvI, it will be
V m a cs)

necessary to use asymptotic expansions to calculate Q (cosS) and P (cosO).
V V

Another region where trouble occurs is at small angles (e<10). The

complex Gauss continued fraction algorithm is still very accurate at small

angles, but the continued fraction converges at a very slow rate. Sometimes

several thousand terms are required for convergence, which in turn uses an

inordinate amount of computer time. This problem occurs because the argument

approaches the cut of the Gauss continued fraction at +1. To avoid this

problem, we use the logarithmic solution to calculate Qm(cose) for small

angles.

A similar method for computing Qm(cose) has also been developed using

real analysis only. Since no simple series formula for Q(cosO) could be

found, we concentrated on Pm(-cos8) instead. PM(-cos0) is related

to Q(cos6) and Pm(cose) by

Q (cos 8) - " -V
Q 2sincwsv) if {cos(ir(V~m)]P ,(cose) - Pm(-cose)1, 0<0<wr/2.V ~ 2sin[w(v+m)]

(21)

Similar computational difficulties exist for the computation

of Pm(-cosO) as e(cose). Using the same equations as in

calculating Pm(cos) , we can derive the following continued fraction
V

P'V(-cos8) - (%Hu) F(-vv+l; 1+m; (cos6/2) 2 ) (22)

v _,(-COS ) F(-v+l, v; +m; (cosO/2)
2 )
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Letting a--v, b-v, c-n, z-(cosB/2), then

?(z)' - F(a,b+l;ci-;z) -F(a,b+l;c+l;z) F(b,a;c;z)
VF(a+l,b;c+l;z) F(a,b;c;z) F(b,a+l;c+1;z) (23)

This can be calculated by either two Gauss continued fractions or by two

continued fractions of Frank7 which are of the form

F~a,b;c;z)
F(a,b+l;c+1;z)

1-a(c-b)z
c(c+1)
(a-b)z + 1 -(a+ )c+1-b)z
(c+1) Cc+l)(c+2)

C a+1-b ~z + 1 - (a+2)Cc+2-b)z
(c+2) (c+2)(c+3)

(a+2-b)z +1-.
( -c+3) +1

The continued fraction of Frank has its cut on the unit circle. It has proved

to be of little value here because of its much slower convergence rate as

compared to the Gauss continued fraction. This is especially true for small

angles, which effectively limit the use of the Frank continued fraction to

angles greater than 300.

Utilizing similar Wronskian relations as in the complex analysis, we

proceeded in a similar manner, with the exception of replacing Q m (cose) by Eq.

(21). The final result of the real analysis is then

QM(CO) -4Pi(cose) cot[ir(v4s)] + ( cse +Pl csGS~ 4 ()

(25)
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This result can easily be seen to be inferior to the complex analysis

since it is undefined for integral v . Also, it is necessary to calculate two

continued fractions which have relatively slow convergence rates which worsen

with increasing lvi . Therefore, only the complex algorithm is used in the

final programming. The real method will be useful in helping to check and

compare the accuracy of the complex method for calculating Q.-(cose).

IV. ASSOCIATED LEGENDRE FUNCTIONS OF THE SECOND KIND; THE LOGARITHMIC

SOLUTION As mentioned previously, the logarithmic solution is used for the

calculation of Q M(cose) at small angles (0<10). From references (1] and [2],

the following formulas can be derived

Qm(cose) =1/2e(coso(8)[log(//tan2(6/2)) - 2y - 2*(v+l) + m 2s-1V V I (v+s) (v+l-s)
s-l

(--)m m (-v 2)(l-V 2)(4-v 2)''((r-1) 2-v 2)(v+r)(m-r-l)!
2v tan6/2) r orr-o

(-I)r (sin8/2)
2 r

_(sn_2)m ) (V2)(1-V )... ((m+t-l) 2_v2 )(m+v+L)

2v it I (m+Z)!

(i + ... I+)(sine/2) 2£

+2v

(-v) 2 (1-V 2)..((r-) 2-v 2 )(v+r) (1+ 1 + - ..-- )(sinO/2)2r
v1 (r+m)I 2 3 n+r

r3o (26)
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For m-0, but v not an integer,

0 (cos) -/2 P 0 (cos8) [log(cot2(8/2)) - 2Y - 2(v+11

2 2)..( r 2+1 I (-v2)(l-v2)•"L(L-)2-v2)(i+v) (1+ I11+ 1  i/2+ - V )(1 £!V 2_ (+V 1 + I +...I)(sin6/2 )21

(26a)

For m=O and v-n , an integer,

(/2)) - 2(1+ +I
(cose) = 1/2e (cose) [log( o2(12) 2(i 3 .•l

I 1 1

-(-1) Cn+£)! (1+ 2 + 3...L) tlO22.n

+ 2(sin/2) 2 (26b)
(2.!) 2 (n-X)!

Comparing this method with alternate methods of calculating im(cose), shows a

significant loss of accuracy in calulating the logarithmic solution in the

range IvI < 10. The loss of accuracy stems from the psi function

subroutine. The asymptotic series used in the calculation of *(v+l) for

small v does not obtain the desired accuracy. At its worst, only 12

significant figures can be obtained. Outside this range, the logarithmic

solution is as accurate as the rest of the programming. Even though this

method can have some losses of accuracy, it requires a much more reasonable

amount of computer time to execute for small angles than the Gauss continued

fraction.

RESULTS The tables given in Appendix A are examples of the results of our

programming. Throughout most of the intended range at least 25 significant

figures can be obtained. The only significant loss occurs for Qo(cosO) in the

range 8 <1 0 and Ivi <10 where the logarithmic solution is utilized. For

certain values in this range, accuracies of only 12 significant figures can be

obtained.
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In the certain cases P m +ix(cose) and Qm(cos6) for real v , the

imaginary parts can be analytically shown to equal zero. Therefore, the

remaining imaginary parts from our programming in these cases provide a quick

check on the accuracy of the programming.

VI. CONCLUSION We have developed an accurate and efficient method of

calculating the associated Legendre functions for integral order and complex

degree. The programming for this paper was done in double precision FORTRAN

V.

In general, the accuracy of P (cosO) and Q((cosO) was approximately equal
V QVto the maximum accuracy attainable with double precision arithmetic. By

comparing with special cases and alternate means of calculating the associated

Legendre functions (Gaussian quadratures, alternate series of formulas), the

modulus of the results appeared to be accurate to at least 25 significant

figures. The upper limit of lvi at which this programming is still highly

accurate has not yet been determined. It is expected that the cutoff range

will probably lie somewhere in the region 60< v <100.

The logarithmic solution, used in calculating Q (cos8) for 8<10, is not as

accurate as the rest of the programming in the rangelvl <10. In this range

the modulus can be accurate to as few as 12 significant figures. Work is

continuing to improve the accuracy of the logarithmic solution. The

logarithmic solution is used to reduce the excessive computer time which the

complex Gauss continued fraction method requires for small angles.

In routines still under development at BRL, special series and
Pm

nonhomogeneous recurrence formulas are being used to calculate V-cose)

and 4-cos6). Also being programmed are asymptotic expansions to extend the

range oflvi to very large values. For small angles (6300), Bessel function

expansions will be used 8 . Special hypergeometric series along with sines and

cosines will be used for larger angles.

Note added in proof

The error in the program for the psi function was discovered and corrected

late in August. Calculations for Qm(cosg) obtained from the logarithmic
V
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APPENDIX A

NUMERICAL CALCULATIONS
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solution and by means of the Gauss continued fraction now agree to 25

significant figures when iv1<10. These corrections will be incorporated in the

BRL Report.
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0THE BEST POSSIBLE CLASS OF INITIAL VALUES

mFOR THE POROUS MEDIUM EQUATION IN R

OMichael G. Crandall
Mathematics Research Center

University of Wisconsin-Madison
610 Walnut Street
Madison, WI 53706

ABSTRACT. Some of the main results of the paper [4] by the author, Ph.
Benilan and M. Pierre are briefly described. These results concern the
initial-value problem for the porous medium equation, that is

ut - A(lulm- u) 0 for 0 < t 4 T, x e RN  ,

u(x,0) = *(x)

where m > I is given. The questions treated are concerned with identifying

the most general class of initial functions I for which (IVP)m has a

solution on some time strip 0 < t < T, x e RN. The existence time T may

depend on *. The main results show, among other things, that (IVP)m has a

solution if and only if

sup 2 f. I*(x)jdx) < -
R2 (1)

R

where BR is the R-ball centered at 0; establish estimates on the solution

of (IVP)m; and then show the uniqueness of solutions obeying these estimates.

I. INTRODUCTION. If m = 1, then (IVP), is the Cauchy problem for the

linear heat equation. It may prove helpful to the reader if we review this
case first. If m - 1, one expects (IVP)1 to be uniquely solved by

u(x,t) = 1 f e - IX- y 2 / 4 t *(y)dy (2)
(47rt)N/2

but this hope is rather naive. For example, A. N. Tychonov wrote down a C
function u (see, e.g., [5, pg. 50]) satisfying u(x,t) = 0 for t ( 0,
u(.,t) # 0 for t > 0 and ut - Au = 0 for all x, t. In particular,

u(x,t) is not given by (2) for t > 0 with * = u( ,0) - 0, and one must
consider restrictions on solutions u of (IVP)1 in order to have uniqueness.

A natural restriction was considered by Widder [7]. The results of this line
of research show that if u ) 0 is a solution of u - Au = 0 for

Nt
0 < t 4 T, x e RN , then

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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lim u(.,t) (3)
t+0

exists and (2) holds. (However, # may be a measure and "O(y)dy" then
stands for this measure in (2)). In particular, if * • 0 then there is at
most one solution u > 0 of (IVP), and there is such a solution only if the

integral in (2) defines one. This will be the case (given * ) 0) exactly
when

f e-c (y ) *2 (y)dy < - for some c > 0 ,

and then (2) provides a solution for 0 4 t < 1/4c. Hence (IVP)1 is solvable

in this sense exactly when (4) holds. For (IVP)m we do not have formulas to

guide us, but we do have a few explicit solutions. The solution
Sr(x,t) -=L- g xJk_

(ag(t./N) 1' (5)
g(s) = ((a -bs 2l)+) m- l

where r+  max(r,0) and

I A = N/(N(m-l) + 2)

b = X(m -1)/2mN , (6)

and a > 0 is given by f g(Ixl)dx = 1

is called the Barenblatt-Pattle solution. r assumes the initial-value 8,

the Dirac mass at the origin. The equation ut - &(Jul m-u) = 0 is formally

invariant under the change of variables t + T-t, x + ix, so

2 1
G(x,t) = r(ix,T-t) 1 A (a+b lxi )-1 (7)(t)X It)1/(N(m-l )+2 ) (7

(T-t) T)
is a solution together with r. The solution G has an initial-value

behaving like clxI2/(m -l) near = and G "blows up in finite time". We
expect from these examples that we need to accomodate initial-values f which

could be any finite measure or grow like lxJ2/(m-1 ). Moreover, solutions
both "get better", as in the case of r which has a rough initial datum, and
blow up as in the case of G. This already occurs in the linear case. The

solution of (IVP)1 for 6 = 0 + (4) - N / 2 exp(ixl 2/4) is

1 2 1 2

1 4t 1 4(1-t)
(4,t)N/2 e )N/(4w(I-t))

which first improves and then blows up.
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The appropriate set of initial values for (IVP)m turns out to be the set

of functions (or, more generally, measures) satisfying (1). It is clear that
if 0 is integrable then it satisfies (1), while if

I*(x)i 4 K(i+IxI / (M- 1 ) it also satisfies (1). The necessity that (1)
hold was proved by Aronson and Caffarelli (2] who showed that if u P 0 is a

solution of ut - (um ) = 0 on 0 4 t 4 T, x e RN , then

2

fB s u(x,0)dx 4 C(4 T N/2Cu0,T)) (N(m-)+2)/2()

T-1

where C depends only on m > 1 and N. These authors also proved that if
u is a nonnegative solution on the strip 0 < t 4 T, then the limit of
u(.,t) as t + 0 exists uniquely in the class of measures satisfying (1).
Some of the results obtained in [4] concerning existence and uniqueness are
outlined in the next section.

11. EXISTENCE AND UNIQUENESS
For each number r > 0 let

-sup 12 41.4R)(x)ldxr N _ (9)

R
We also put

101. = lim I11 (10)
r- r

and
X = {measurable N : + R such that <

Another space we will need is the weighted L space

LI(p) = [f e L (R N ) P f e L (R N)
a loc Q

where p (x) = (1+xl 2) - , which is equipped with the obvious norm. The

spaces X, L (p ) are related by:

Lemma 1.
1N 1

i) X C L (p ) for a > N + -

a 2 mn-1
and 1N 1
(ii) X Z L (p ) for a ) N + -

a 2 mn-1
Combining various results of [4], we formulate a version of the basic
existence theorem:

Theorem 1. Let o e X. Then there is a number T(), 0 < T(O) 4 -, such

that (IVP)m has a solution u on R x [0,T(O)) which satisfies

i) sup (p /(M-1)(x)lu(x,t)l) is locally bounded on (0,T(C)).
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(ii) Ut  A(IuI 1 u) in the sense of distributions on 0 < t < T(#),

x e RN
(iii) For 2(m-1] > N(m-1) + 2, t + u(*,t) e C([0,T()) :L (P ))

and u(*,O) - 0.

Civ) Either T(O) = or lim inf lu(*,t)ll - CO
t+T()

The content of Theorem I is that (IVP)m has a solution on a maximal (by

(iv)) interval (0,T(O)) in the sense described by i), (ii), (iii). Note
that (i) guarantees that (ii) is meaningful. The natural expectation that
u(*,t) should assume its initial-value in the sense of the space X does not

hold. This can be seen from i), since tv e x : P1/(M 1 )v e L (R )I is not

dense in X ([4], Appendix). However, (iii) is adequate in the sense that it
is strong enough to imply uniqueness. Theorem U of (51 implies:

Theorem 2. Let T > 0 and u, v e C([0,T] :L (p )) for some C. Assume

S1/m(-1) (lul + lvi) is bounded in L(R N ) uniformly on compact subsets of

[0,T], and ut - aW ui M-u) = vt - A(IvII v) in D( x (0,T)). If

u(*,O) = v(*,0), then u = v.

According to Theorems 1 and 2, to each * e x we can associate an
existence time T(O) > 0 and a unique solution u(x,t) of (IVP). We write
u(*,t) - Ut)O, that is U(t) is the associated "time-t" map. U(t)* is
defined for 0 4 t < T(O). We next give some more quantitative information
than that provided by Theorem 1. However, proofs of some of these facts are
part of the proof of Theorem 1.
(A) There is a constant c1 > 0 such that for r > 1 we have

T(#) Tr () - c1/1m0l

If * > 0, then T(O) - exactly when i i.= 0.

(B) There is a constant c2 > 0 such that for e e x

P (X)IU(t)*(x)l ( c212/N t
-  for 0 < t < TI() ,

where T1 (#) is defined in (A).

(C) For M > 0, + + U(t)# is Lipschitz continuous from Ll(p )A CM  into

L1 (p) and from C, into X where

C - {4e x : 11 (4 and 0 < t < min(T I(),1)}

(D) ) * implies U(t)* ) U(t)•
(W) There is a constant c > 0 such that

IUCt)I1L c(2-11 0  +1I10) for t> 0

where
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1410= sup f[ lxzll1(x)Idx

zeaN
Either explicit solutions or scaling arguments may be used to show that

if T( ) is to be estimated by a function of II , it must behave like

c/w* , so (A) is sharp in this respect. Similarly, the Aronson-Caffarelli

result (8] shows that Ifl - 0 is necessary for T(o) = - if 0 > 0. Note

that LI (R)= [# e x : ii - 01. Other inclusions are explained in [4].

(B) is a "regularizing effect" showing that arbitrary initial data o e x
yields a solution U(t)O bounded by multiples of (1 + lxj 2 )1/ ( M - ) for

0 < t < T( ). The estimate may, of course, "blow up" as t + T( ) or t + 0
in a way consistent with (7) and (B). (C) states continuous dependence
results with respect to initial data, while (D) is the order preservation with
respect to initial data one expects from the maximum prnciple. Finally, (E)
(in conjunction with (8)) essentially characterizes those initial data for

which U(t)* e Lc(R N ) for t > 0, generalizing results of Vron [6] and
e~nilan [3].

There is much more we could say, but the above suffices to introduce the
results. The proofs are interesting, but we will not attempt to describe them
except very briefly. Roughly speaking, the Aronson-Benilan inequality (1]

-A(u M - 1 ) 4 c/t, which holds for certain nonnegative solutions of ut = M(um)

is used to estimate P /M-1 ) u in L"(R ) in terms of lull for nonnegative

solutions of (IVP)m. This is then used in the evolution equation to estimate

1Pl/(M_1ul in LO(SN) in terms of l for solutions of (IVP)m, yielding

(B) above. These estimates are used to prove (C), which in turn allows one to

pass from *'s for which existence is known (e.g., * e L (R)) to the

general case * e X.
Other information in the paper concerns addition regularity assertions,

the case of measures *, etc..
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0A NEW FLIGHT INSTABILITY AFFECTING SPINNING PROJECTILES
HAVING NON-RIGID PAYLOADS

0Miles C. Miller

Chemical Systems Laboratory
US Army Armament Research and Development Command

Aberdeen Proving Ground, Maryland 21010

ABSTRACT

Severe flight instabilities were experienced by an Army spin stabilized
projectile whith had a partial sOlid/partialiquid payload. Characteristic
of this ilight instability was a sharp increase in projectile yaw angle
accompaniee by an abrupt loss in projectile spin rate. Although it was
known that this instability was due to movement of the non-rigid payload,
the exact mechanism causing the effect was not understood. A special
laboratory test fixture was used to force a full-scale projectile payload
to simulate the combined spin and simple coning motion of the projectile
in flight. The fixture was used to determine critical factors influencing
the payload induced despin moment, and from this the associated flight
stability was inferred. Candidate payload configurations intended to
eliminate the instability were evaluated on the fixture culminating in a
payload design which provided the desired functional and flight performance.
Subsequent fixture tests with homogeneous, viscous liquid fills produced
similar despin characteristics to those obtained with the partial solid/
partial liquid payloads. The despin data indicated increasing instability with
increasing liquid viscosIty with a maximum effect at a kinematic viscosity
of about 105 CS whereupon\the instability decreases with increasing viscosity.
Instrumented flight tests of projectiles having identical fills to those
tested on the fixture showed good correlation with fixture results. This
payload induced flight instability appears to be fundamentally different
from the Stewartson type phenomena associated with liquid filled projectiles.
The similarity in the instability characteristics due to the simple homogeneous,
viscous liquids and the more complex non-rigid payloads could aid in the
development of a general theory describing the source of the instability and
the establishment of design criteria for future sp" ring projectile systems.
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INTPODUCTION

The XM761, 155mm Improved Smoke Screening artillery projectile contained
a preloaded payload canister assembly illustrated in Figure 1. A total of
48 cotton wicks were contained in the canister in three tiers with 16 wicks
per tier. Each wick measured 16.5 cm in length and weighed 17-grams. An
aluminum cruciform baffle divided the interior into four quadrants as
illustrated in Figure 2. The canister also contained white phosphorus
(WP) having the specific mass density of 1.7, a melting temperature of 44 0 C,
and a subsequent kinematic viscosity of 1.5 CS. The loaded canister had a
mass of 12.25 kg including 5.8 kg of WP, giving a total projectile weight of
about 46.27 kg. Upon expulsion from the projectile over the target, the WP
saturated wicks were dispersed onto a relatively large area of ground. Each
wick would spontaneously ignite providing a series of point sources of smoke
resulting in a rapidly formed, dense smoke screen of relatively long duration.
Although the X761 produced the desired smoke screening performance, flight
tests revealed a serious flight stability problem.1,2,3

When fired at low ambient temperatures where the WP was in a solid state,
the projectile had stable flight under all flight conditions. Figure 3
contains yaw sonde data for a typical stable flight. The peak-to-peak
amplitude of the SIGMA N trace denotes the total angle of yaw possessed
by the projectile, the reduction of yaw with time indicates a stable
projectile flight.

At elevated temperatures where the WP was in a liquid state, the projectile
experienced a severe flight instability. The unique feature of this instability
was that both a large increase in yaw angle and severe loss in spin rate were
suffered by the projectile, causing the round to fall short of its intended
range. This problem was particularly critical at the Zone 4 (transonic muzzle
velocity) firing condition where the projectile possesses minimum aeroballistic
stability and experienced relatively large initial yaw angles. Figure 4
presents yaw sonde data from a typical unstable flight depicting the increase
in yaw angle and simultaneous spin loss.

The payload induced coupled yaw and roll effect of the XM761 appeared to
be similar to a projectile instability problem analyzed by Murphy4 which
involved an inertial effect created by internal moving rigid parts. This
particular analysis did not directly apply to the XR761 situation because of
the non-rigid i.e., partial solid/partial liquid) composition of the XM761
payload. However, as in the case of the instability produced by the moving
rigid internal parts, it was assumed that both the yawing moment and the
despin moment observed for the XM761 instability were components of a single
payload induced moment.

A special ground test fixture was built by the Chemical Systems Laboratory
(CSL) which caused an actual, full-scale projectile payload assembly to undergo
the basic spin and nutational motion of the projectile in flight. 5 The internal
payload motion was thereby created, the resulting despin moment measured, and
the data used to evaluate the potential flight stability of the projectile
carrying the payload configuration tested.
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This paper describes the use of this test fixture to determine the
critical performance characteristics of the despin resulting from the
relative motion of the XM761-type non-rigid payload and the subsequent
use of the fixture to evolve a stable WP smoke round payload configuration.
The results of studies with simple homogeneous, viscous liquid fills which
demonstrated their similarity to the more complex partial solid/partial
liquid non-rigid payloads in producing this type of flight instability
are also presented. Other investigation associated with this phenomena
are noted along with comments regarding current and future experimental
efforts.

SYMBOLS

M despin moment due to non-rigid payload

P spin rate of projectile

SIGMA N angle of projectile centerline relative
to sun direction

t time

y specific mass density

6 canister coning angle

v kinematic viscosity

S1 canister coning rate

Wcanister spin rate

WP white phosphorus

LABORATORY TEST FIXTURE

Figure 5 contains a photograph of the laboratory test fixture. A full-
scale canister and inclosed payload assembly was mounted between two clevis
type bearing housings. The clevises were mounted to the test fixture frame
so that the canister longitudinal axis could be oriented at an angle to the
vertical, representing the fixed nutational coning angle. The canister could
be set at angles from 0 to 20 degrees in 5 degree increments. The upper
clevis contained a nozzle/air turbine arrangement providing spin torque to the
canister. The frame, and attached canister were rotated about a vertical
axis by means of an electric motor located on the lower section of the test
fixture. The canister spin rate was measured by means of a magnetic
tachometer located on the lower clevis, and the coning rate indicated by a photo
tachometer located beneath the table.
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With the canister mounted at a particular angle (0), the air turbine
spun the canister up to the spin rate of the projectile for the specific
conditions being tested. When the desired canister spin rate (w) has been
achieved, the electric motor spun the frame with the attached spinning canister
at the desired nutational coning frequency. Withthe canister at a constant
coning rate (a), the air turbine was cut-off allowing the canister to spin
down due to the combined effects of bearing friction and the payload induced
despin moment. The canister spin rate was recorded as a function of time.
The despin moment due to friction was known from previous calibration,
therefore, any additional despin moment was due to a payload induced effect.
Tests were conducted over a range of constant coning rates at each fixed
coning angle, thus encompassing nutation rates corresponding to various
flight velocities and yaw angles.

EVALUATION OF THE XM761 PAYLOAD

A series of test was conducted on the test fixture using an actual XM761
canister assembly containing 48 patio torch wicks, the baffle and calcium
nitrate as simulant for WP. Calcium nitrate has the same mass density and
melting temperature as WP and the payload could be evaluated with the WP
simulant in both a solid (cool) or liquid (hot) state.

Figure 6 shows the payload induced despin moment as a function of coning
rate and coning angle for the WP simulant in a liquid state. The despin
moment was not a function of canister spin rate, provided a sufficient canister
spin rate was present (> 1,000 rpm). The data indicate that the despin moment
is a non-linear function of the coning rate. Figure 7 contains the despin
moment as function of canister coning angle and coning rate indicating that
the despin moment is also a non-linear function of the coning angle.

Tests with the WP simulant in solid state produced no payload induced
despin moment. The fixture results revealed that the payload induced despin
moment is not dependent on longitudinal acceleration at launch and could
also be reproduced after a liquid/solid/liquid WP state cycle.

EVOLUTION OF XM82S CONFIGURATION

The test fixture was used to evaluate several candidate payload canister
configurations intended to eliminate the XM761 stability problem. It was
known that the instability was due to payload movement and, if the payload
were constrained, the instability would be eliminated. However, because of
the liquid nature of WP, it was mpossible to completely constrain this type
of payload and the degree of contraint required to minimize the instability
effect was not known.
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Fixture tests were conducted with the nominal XM761 payload configuration,
using a blended Freon WP simulant which matched the physical properties of
liquid WP, including the specific density and specific viscosity without
requiring elevated temperatures.

A payload configuration was evolved composed of 120 3/4-inch thick felt
wedges stacked between the longitudinal baffle as illustrated in Figure 8.
The felt wedges served the same function as the cotton wicks, but the
denser material and tighter packing of the felt wedges restricted their
movement inside the canister. Test fixture results for this payload
configuration are shown in Figure 9 and indicate a despin moment considerably
lower than that measured for the nominal XM761. Data are shown for a
coning rate of 500 rpm which is the projectile nutational frequency for the
critical Zone 4 (transonic launch) condition. Subsequent flight tests of the
felt wedge configuration using actial liquid WP resulted in stable flights
under firing conditions which cause the nominal XM761 WP/wick configuration
to be unstable.6 This configuration was subsequently entered into development
as the XM82S projectile.

HOMOGENEOUS, VISCOUS LIQUID FILLS

Although an improved smoke screening projectile configuration was achieved,
the exact mechanism behind the payload induced instability was not understood.
Vaughn7 suggested that the combined solid/liquid XM761 payload acts as a homo-
geneous, highly viscous liquid. An extensive series of controlled experiments
were conducted with the laboratory test fixture using liquid fills of various
viscosities and densities.8 ,9 These tests indicated that a cylindrical
canister, completely filled (i.e., no void) with a homogeneous viscous liquid
produces a measurable payload induced despin moment under combined spinning
and coning motion. Figure 10 contains representative test results for corn
syrup having a specific mass density of 1.4 and a kinematic viscosity of 200,000
CS. The despin moment was found to be independent of canister spin rate and
was a non-linear function of both the coning rate and coning angle; results
similar to those for the X14761 type payload.

Figure 11 shows the despin moment as a function of the liquid fill
kinematic viscosity for a 20 degree coning angle, with the moment
normalized to the mass density of water. These data show that the despin
increases with the liquid fill viscosity, achieving a maximum value in the
105 CS range, thereupon diminishing to zero at very large values of viscosity.
Instrumented flight tests of full-scale 155mm projectiles having identical
viscous liquid payloads to those evaluated on the test fixture were conducted
by Ballistics Research Laboratory (BRL)1OU and showed good qualitative
correlation to the fixture results. The similarity between the unstable
flight motion of a corn syrup filled projectile and that of the XM761 is
apparent from Figure 12.
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These results are significant in that if the instabilities are due to a
common mechanism, theoretical analysis based on a well defined homogeneous
viscous liquid fill would be more tractable than for the more difficult
to quantify partial liquid/partial solid type non-rigid payloads.

OTHER ,EXPERIMENTAL RESULTS

Additional fixture studies were conducted with homogeneous viscous
liquids contained in a transparent canister.13 These investigations
provided an insight into the internal flow characteristics by indicating
the distortion of the air void (i.e., center of liquid rotation) due to
the combined spinning and coning motion of the canister. The studies
revealed that the characteristic sinusoidal void distortion is restricted
to the plane of the coning angle. Further, this distortion increases with
coning rate and coning angle, but decreases with increasing liquid viscosity
as shown in Figure 13.

D'Amico and Rogers14 at the Ballistics Research Laboratory (BRL), used a
spinning/coning free yaw laboratory gyroscope to obtain measurements of the
yawing effect induced by the highly viscous liquid fills. This work indicated
conditions of fluid properties and canister motion which defined a demarcation
between the inertial wave, Stewartson type instability and that associated
with the highly viscous liquids.

A concerted research effort is underway at the Chemical Systems
Laboratory (CSL) to investigate the basic phenomena associated with this new
instability. The laboratory test fixture shown in Figure 14 has been sub-
stantially modified to provide the operational characteristics and performance
capabilities required to support these studies. The rectangular frame
allows unobstructed viewing of the canister from three orthogonal directions
including along the canister longitudinal axis. The canister spin turbine
has been located at the lower end of the canister to permit the mounting of
cameras and other instrumentation on the fixture frame. The canister bearing
housings have been designed to accept a variety of canister sizes and
geometries and to facilitate coning angle changes. The new air turbine
configuration includes higher supply pressures and increased air flow volume
providing greatly increased canister spin torque; canister spin rates of 15,000
rev/min being possible. The larger torque available will also act to sustain
high canister spin rates in the presence of large payload induced despin
moments. The larger coning motor can produce coning rates up to 1,200 rev/min.

It is conjectured that shear stress created by the non-rigid payload on
the inner surface of the canister could be the fundamental mechanism responsible
for the despin and destabilizing moment. In the case of the homogeneous, viscous
liquid fills, this shear stress is basically a product of the velocity gradient
and the liquid viscosity. In the case of the low viscosity liquids, the action
of the spinning and coning canister produces high shear rates, but the small
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values of viscosity result in low shear stresses and low payload induced moments.
For the extremely high viscosity liquids the relative motion and associated shear
rates are very low, in effect approaching a rigid body condition. Consequently,
even with their large viscosity only small shear stresses and moments are
produced. The intermediate viscosity liquids possess both large shear rates
and viscosity values to produce substantial shear stresses and moments. The
maximum effect for the motion conditions of the spin stabilized projectile
considered here, being 105 CS. This shear stress dependence would differentiate
this type of instability from a Stewartson 12 type instability which is produced
by normal stresses (i.e., pressures).

Experiments are planned for the modified laboratory test fixture to
specifically investigate the relation of the shear stress to this instability.
This will include the determination of the detailed internal flow field of a
viscous liquid undergoing simultaneous spinning and coning motion as well
as direct measurement of the resulting internal wall shear stress. It is
hoped that these data will provide additional insight into the basic
phenomena associated with this new and critical flight instability.

CONCLUSIONS

1. Certain non-rigid payloads can create both a destabilizing yawing motion
and a despin effect in spinning projectiles.

2. The payload induced despin moment can be produced and measured on a
laboratory test fixture which simulates the simultaneous spiuning and coning
motion of a projectile in flight.

3. The payload induced despin moment increases non-linearly with coning
frequency and coning angle and is independent of the spinning frequency provided
a minimum spin rate is present.

4. Similar instability characteristics are produced by partial solid/partial
liquid payload arrangements as well as homogeneous, highly viscous liquid
fills.

5. Experimental and analytical studies for the homogeneous, viscous liquid
case could establish a general theory describing the common mechanism for
this instability.
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0TERRAIN MESOROUGHNESS DESCRIPTION AND
ITS APPLICATION TO MOBILITY AND COVER

0Richard A. Weiss
Mobility Systems Division

U. S. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi 39180

ABSTRACT. The mobility of vehicles traveling off the road has always
Sbeen of interest to military planners. In fact, the survivability of military
vehicles on a battlefield depends to a large extent on the degree of mobility
and cover afforded by the terrain. In order to develop accurate measures of
the mobility and cover characteristics of terrain, a study was made of the
statistical description of terrain elevation -variations on a scale smaller
than shown on a topographic map. This study shows that a useful set of terrain
descriptors are the standard deviations of the detrended elevation and its
derivatives. The probabilities of a vehicle encountering specified values of
slope or finding cover in a specified interval are calculated in terms of the
terrain roughness descriptors. These probabilities can be used to quantify
terrain areas of a battlefield and develop map overlays showing patches which
indicate the degree of slopes expected to be encountered and the amount of
cover that should be available. Numerical values of the probabilities are
calculated for several terrain areas. .

1. INTRODUCTION. A significant part of the determination of the sur-
vivability of military vehicles on a battlefield is an estimation of their mo-
bility on the battlefield terrain and an estimation of the degree of cover
afforded by the terrain. The detection of a target and the subsequent fire-
power accuracy, including hit and kill probabilities, depend on the percent of
a target that is exposed to fire and on the speed at which a vehicle can move
across the battlefield terrain. This paper presents a method of estimating the
mobility characteristics and available cover of battlefield terrain and speci-
fies the terrain parameters required to accomplish this.

This is the second of a two-part study of the methods used for a quanti-
tative description of terrain roughness. The first part considered the descrip-
tion of terrain microroughness with applications to the prediction of the
dynamic response of military vehicles operating on rough terrain.1'2 An analy-
tical description of microroughness is necessary for the design of track and
wheel suspension systems and also for the design of optical observation and
sighting devices, gun stabilization systems, and many other complex weapons
systems that are part of modern military vehicles. Many of the analytical pro-
cedures introduced for the description of microroughness can be used to describe
large-scale variations of terrain elevation.

The second part of the terrain roughness study deals with large-scale ele-
vation variations on a scale appropriate for the description of the mobility,
cover, and concealment properties of a terrain area.3 For the purposes of this
paper the large-scale terrain elevations can be separated into two classes:
mesoroughness which describes the terrain elevation variations on a scale between
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microroughness and the elevations described by a topographic map, and macro-
roughness which is essentially the terrain elevations given by contours on a
topographic map. The mesoroughness is not obtainable from a standard topo-
graphic map, and the terrain elevation variations of the mesoroughness may af-
ford cover for vehicles on a battlefield.

Aside from vegetation, the cover, concealment, and mobility characteris-
tics of a mesoroughness elevation profile, as seen from a point on a contour of
a topographic map, are determined by the magnitude and character of its eleva-
tion variations. Therefore, an analytical description of terrain mesoroughness
is required for the prediction of cover and mobility, and the U. S. Army Engi-
neer Waterways Experiment Station (WES) was requested to develop improved analy-
tical representations of terrain mesoroughness and to incorporate this develop-
ment into cover and mobility indices for military mapping purposes.

Measurement of Terrain Elevation Profiles. A study of terrain roughness
begins with the measurement of an elevation profile. A simple and very accurate
method of-obtaining a profile uses the theodolite and surveyor's staff, but this
method is very time-consuming. The measuring wheel method is quicker but has
the disadvantages of disturbing the terrain and not being useful in very rough
terrain. Terrain elevation measurements done by WES utilize the theodolite and
surveyor's staff.

Photogrammetric methods of measuring terrain elevation profiles are simpler
and faster because extended areas can be measured by areal surveys.4 ,5 They
have the further advantages of not affecting terrain conditions, and measuring
all terrain features such as vegetation, roads, rivers, ditches, etc., as well
as elevations. Photogrammetry has several disadvantages including the facts
that vegetation often impairs terrain elevation measurements, evaluating photo-
graphs is time-consuming and expensive, and the resolution of elevations is
limited especially for high altitude photographs.6

Terrain profiles determined by any method are presented as measurements
of elevation at discrete points along some predetermined line. The effect of
this discrete scanning is to remove from the actual elevation profile frequen-
cies higher than (AL)-1 where AL - scanning length , so that scanning can be
represented as a low pass filter. The spatial frequency (AL)- 1 is essen-
tially the Nyquist frequency associated with the measurement of the elevation
profile and enters the calculation of power spectra through the spectral window
functions for the slope and curvature. Photogrammetric methods tend to under-
estimate the values of the standard deviations of elevation, slope, and curva-
ture and their associated power spectra especially in the high frequency regions.

Macroterrain Roughness. A battlefield area can be divided into a grid of
square areas at whose vertices the terrain elevations are specified. These ele-
vations are recorded on a topographic map at uniform spacings of generally about
10 or 100 m. These terrain elevations form a three-dimensional surface called
the macroterrain roughness. The macroroughness describes the large-scale trend
of elevation variations, and is suitable for the descriptions of cover and ve-
hicle mobility over large areas.7 Terrain elevation variations on a scale less
than the 100-m grid length are not obtainable from a topographic map.
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Mesoterrain Roughness. Superimposed on the macroterrain (the trend given
by the elevations specified at the 100-m intervals of a topographic map) are
the elevation variations on a scale less than the 100-m interval--the terrain
mesoroughness. Troops and equipment may possibly be concealed and covered with
the terrain elevation variations of the 100-m interval connecting two elevation
contours of a topographic map, whereas a straight line or other extrapolation
of elevation between these two points would not suggest this.

The slopes occurring within the mesoroughness may differ considerably from
that obtained from a topographic map, and therefore the actual vehicle mobility
in a battlefield area may be considerably different from the predicted by the
slopes obtained from a topographic map. Knowledge of the mesoroughness terrain
elevations will be critical for estimating transit time of vehicles across a
battlefield. Obstacles of various sizes and shapes are also expected to occur
within the mesoroughness and these will affect the degree of mobility in a
given area. The mesoroughness description is necessary for the prediction of
cover, concealment, and mobility over small distance scales and small time
scales.

The mesoroughness elevation varies throughout a battlefield area, and,
accordingly, the amount of cover for a target and the mobility of a vehicle can
vary rapidly over small distances (-10 m). Therefore, it will be of advantage
for military purposes to be able to estimate the mesoroughness for the areas of
a battlefield. A number of mesoroughness descriptors need to be developed in
order to do this. The battlefield is divided into areas within which the meso-
roughness descriptors have essentially the same values. The mesoroughness de-
scriptors can be estimated for a given area by sampling a number of mesoterrain
elevation profiles in the area.

A reduction of the size of the grid spacing of the macroterrain roughness
descriptions would adequately incorporate the mesoroughness, but this would
require large computer storage capacity. A more reasonable procedure is to
describe the mesoroughness by a set of stochastic variables.

The determination of the descriptors of the random mesoroughness compo-
nent requires the removal of the trend of the terrain elevation data. A de-
trending procedure is described in Part II of this paper. With a properly
selected filter constant the detrended elevation profile gives the mesorough-
ness elevations between two points on a topographic map. The detrending is
accomplished by a computer program RFNWUD.3 It is assumed that the mesorough-
ness irregularities can be described by a zero mean stationary Gaussian (normal)
random process.8,9 The mesoroughness displacement and its derivatives will be
represented by zero-mean Gaussian processes which are described by the standard
deviations of displacement, slope, curvature, etc. The standard deviations of
the mesoroughness displacemenet and its derivatives to any order are calculated
from a detrended elevation program by the computer program RFNWUD.

Cover and Mobility Characteristics. Cover refers to protection from
direct weapons fire, while the term concealment refers to features that would
interrupt the line of sight. For instance, vegetation may afford concealment
but not necessarily cover. Vegetation is not considered in this report, and
only cover (concealment) due to terrain elevation variations is treated. The
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degree of available cover afforded a target is measured by the fraction of tar-
get height that is covered, i.e. the depth of the hole in which the vehicle
sits compared to the vehicle's height.

The mobility of vehicles depends on a large number of terrain features in-
cluding: vegetaion, soil strength, terrain slopes, etc. However, the primary
terrain roughness variable that enters mobility calculations is the slope ex-
pected to be encountered along some path.l0 Each vehicle is associated with a
critical slope which it cannot negotiate.

Because the mesoterrain roughness is represented by stochastic variables,
the average mesoroughness displacement and the fraction of target height that is
covered can only be described by a probability theory. This is also true of the
slopes expected to be encountered on a battlefield area. With the assumption
of zero mean Gaussian distributions to describe the mesoroughness, the calcula-
tion of average values and probabilities of encountering specified terrain
characteristics is relatively simple and is done in Part III. These average
values and probabilities are expressed in terms of the mesoroughness descrip-
tors (standard deviations of terrain displacement and its derivatives) and
can serve as indices to delineate patches on a map that have similar cover and
mobility characteristics.

The basic objective of this paper is the development of new mesoroughness
terrain descriptors. The objectives and scope of this paper are shown it,
Figures la and lb.

2. STATISTICAL DESCRIPTION OF MESOTERRAIN ROUGHNESS. This section de-
velops the parameters necessary for the description of terrain mesoroughness.
It is assumed that the mesoroughness can be described by a zero-mean stationary
Gaussian random process which is obtained from a measured elevation profile by
a suitable detrending process. The frequency content of a stationary random
process is described by the power spectrum or alternatively by the autocorrela-
tion or autocovariance functions.11 It is shown that that autocovariance func-
tions are completely determined by the standard deviations of the mesoterrain
elevation and all its derivatives. Therefore, the basic mesoroughness descrip-
tors are the standard deviations of the mesoterrain elevation and its
derivatives.

The standard deviations of mesoroughness displacement and its derivatives
are calculated from detrended terrain elevation data. The accuracy of the
values of the numerical derivatives obtained from the elevation data decreases
for the higher derivatives. But many terms (higher derivatives) are required
for a useful power series expansion of the autocorrelation function for large
argument. Therefore, the power series method of calculating the autocorrelation
function and the power spectrum is more formal than practical, and for numerical
calculations it is more useful to represent the power spectrum as a polynomial
whose coefficients are determined b using only the standard deviations of
displacement, slope, and curvature.1

Although the power series representations for the autocorrelations func-
tions are only of formal value for determining the power spectra, they can be
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used to calculate the probabilities )f finding specified mesoterrain displace-

ments and slopes in a small spatial interval of the terrain. These probabili-
ties are important for the description of cover and mobility characteristics.

Detrending. Except or relatively flat areas, a macroterrain elevation
profile cannot be represented as a stationary random process because it has a
trend, i.e. a variation of the statistical parameters along the length of the
profile. In general the nonstationary character of the measured elevation pro-
file has to be removed by a detrending procedure in order to obtain the standard
deviations of the resulting mesoroughness. In the cases where no trend exists
the measured elevation data can be processed directly.1 The nonstationary
property of an elevation profile can be removed by a detrending procedure which
removes the long wavelength (the trend) components as shown in Figure 2a.

The mesoroughness will be treated as a stationary random process. The
mesoroughness is extracted from the measured elevation profile by using the
following exponentially weighted moving average.

12

(x) - h(x) - [h(x a) + h(x + ae-a/X da (l)

where

= mesoroughness displacement
h - terrain elevation
A - detrending constant (filter constant)
x - horizontal distance
a - integration variable

The detrending procedure given in Equation 1 removes all wavelength components
of the macroterrain elevations that are greater than A A computer program
RFNWUD was developed to accomplish the detrending.

3

Plausibility arguments can be given to select a value for A . If the
measurement interval of the macroroughness is L the filter constant can be
taken to be

A% L (la)

in order to remove the trend of the macroterrain as shown in Figure 2b. Another
possible choice for A would account for the elevation difference between two

points on the macroterrain of a topographic map as follows

A % H (lb)

where H - elevation difference . Equations la and lb represent intuitive pos-
sibilities; in fact the values of the parameter A should be chosen to produce
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agreement between the probability calculations of cover and mobility given in
Part III and the measured cover and mobility characteristics of an area.

Mesoterrain Roughness Description. Terrain elevation is specified at
finite intervals of horizontal distance and is generally a continuous function
whose derivatives are discontinuous at the points of measurement. For the pur-
pose of calculating standard deviations the derivatives at each point can be
assumed to be the slope of the straight line segment to its right or left as
shown in Figure 2c. To simplify notation the n'th derivative of the mesoter-
rain displacement E(xi) at the point xi will be written as

(X) d n (2)
n dx n

di

where n = 0, 1, 2,... As usual the zeroth derivative is just the displacement
itself

o(xi) = &(xi) (3)

The root mean square (rms) values of these derivatives are calculated as
follows

N N

£2 l 2(xi) E [go(xi)] 2 (4)

N N
Z 2 1L.. [Eli =x) 2 (5)

i-l i-l

N 

e

£2 1 2d\ N (6i12()

2 Ni

or in general

N N

£2 1N )2 -1 n(hi 2 (8)
in dxn E
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where

- rms value of displacement0

E1  rms value of slope

E2 - rms value of second derivative (curvature)

E3  rms value of third derivative of displacement

E rms value of n'th derivative of displacementn

N - number of points where elevations are measured

The number N is generally large being of the order of hundreds or thousands.

The mean values of the macroterrain displacement and its derivatives are
calculated as follows

N N

n i dxn  (9)
i i=l

The standard deviations of macroroughness displacement and derivatives are
given by

11

2 E2 2  (10)On =n - ni0

The standard deviations can also be written as

N
a 2" _ 1 *2(xi) (11)

i=l

where

n(xi) " (Xi) -(x (12)

are the values of mesoterrain displacement and its derivatives measured from
their mean values, i.e. their values for a zero mean process since 0. = 0
The computer program RFNWUD calculates the standard deviations of mesoterrain
displacement, slope, curvature, etc. from measured elevation data using the
formulas 1 through 10.

Autocorrelation and Autocovariance Functions. The autocorrelation and
autocovariance functions of the mesoterrain elevation and its derivatives are
defined by

11
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N

R (a) = n(xi) n(x + a) (13a)

i-i

C (a) - R (a) - (13b)

where

R (a) - autocorrelation function of n'th derivative of elevation

C (a) = autocovariance function of n'th derivative of elevation
n - 0, 1, 2, 3. .....

11
The autocovariance functions can also be written as

N

Cn (a) = E n(xi) n(Xi + a) (14)

i=l

where * (xi) is given by Equation 12. Because of the stationarity assumption,
the parameters En , On , and E are independent of the interval a . From
Equations 8, 11, 13a, and 14 it follows that

R (0) -£2 (15a)

n n

C (0) = a2 (15b)

Useful quantities that describe the random variables * n are the corre-
lation coefficients11

Ca(a)

rn(a) C -C( )  (16)

where n = 0, 1, 2, 3. ..... The correlation coefficients describe the statis-
tical properties of the mesoterrain displacement and all its derivatives. The
correlation coefficients will be used in Part III to calculate the probability
of encountering specified displacements and slopes in a given spatial interval.

The autocorrelation and autocovariance are even functions and therefore
have the following even power Taylor series expansions1 3

R(2) ( 0 )  ( (4) ( 0 )

R2(a) R (0) + ! a + a + ... (17a)
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+ (2)(0) c(4 ) (0)
C n(a) C n(0) + 2 a + 41 a + (17b)

where

R(J)(o) - J'th derivative of R (a) evaluated at a = 0n n

c(J)(0) - J'th derivative of C (a) evaluated at a - 0n n

The correlation coefficients are given by Equations 16 and 17b to be

C ( 2 ) (0) C (4) (0)
1 n 2 1 n 4rn~a 2! Cn (0) a + En. C(O ).  + . 1)

It can be shown that the autocovariance function and its derivatives are re-
lated to the standard deviations of the displacement and its derivatives in
the following way

3

Cn(0) = 02 (19)

C (2 )() - (20)
n n+l

c ( 4 ) (0) 2 (1
n n+2

C (6 )(0) 2 (22)
n n+3

C( 2 8) - (-1)s  (23)n °n+s (3

Similar expressions hold for the R (j ) (0) coefficients with the a's replaced
by the Z's . n

The Taylor series of the autocovariance functions (Equation 17b) and the
correlation coefficients (Equation 18) can therefore be written as

2 2 2 4
2 n+la  an+2aC c2- - ___ + (24)

n n 2 "4"

/a \2 / 2
1 n +l n+2) a 4

rn - -. r 7 / 4 !\o a- .(5

In this way the correlation coefficients can be evaluated in terms of the stan-
dard deviations of mesoterrain displacement and its derivatives. The general
expressions for these functions are
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C (cc) -a2 (-)j si aL 2j (26)n n (2j)!
j =0
J=O

r n(0) - I+ E (-l) Sj a 2j (27)
(2j) !

J-w

whe re

S =1 (28)

no

Sn a (n-2 (29)

8n2 (a-- (30)

2

Snj n (31)

The coefficients appearing in the power series expansion of the correla-
tion coefficients have a simple physical interpretation if it is noticed that
the characteristic wavelengths for the mesoterrain displacement and its deriva-
tives are given as follows

aA n (32)Xn On+1

where

A - wavelength of n'th derivative of the mesoroughness dis-
n placement. Specifically,

X0 - 2ra 0/a - characteristic wavelength of displacement

X1 - 2wo1 /O2 - characteristic wavelength of slope

A2 - 2wo2 /a3 - characteristic wavelength curvature

A3 = 2wa 3/a4 ' characteristic wavelength of the third derivative

and so on. Therefore from Equations 31 and 32 it follows that
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S (27r2r 27r+ 27r)233nn " n+l n+2 " nJ 33

for j 1 , 2, 3, ....-. I

In terms of these wavelengths the correlation coefficients are written
as

(a) 1 /27rca2 +12r 2ra 2
n 2' nj WVn n7 i

(34)

1L/2ra 2w 21' +
-6 An Xn+l Xn+2/

If the following set of dimensionless numbers are introduced

T =27r (35)
n Xnn

the correlation coefficients can be written as

1 2 1 2 1 Ti )2(3

rn a) - I T + 4T - ( + ... (36)

+ ()--l) -T Tn+Tn+2  " T )2 (37)

i-1

Written out in full the expressions for the correlation coefficients of
mesoterrain displacement, slope, and curvature are respectively

ro -1 1 2 + L_ (TOT 1 ) 2 j (ToT1 T2)

(38)
1 2

+40320 (ToT1T2T3) -

12+1 2 1 2
r1 1 +- (T1T2) -720 (T1T2T3 )

(39)

12+ 40320 (TIT2T3T4) -...

12 2 1 2 2 1 2
r2  1 - T 2 + T2 3  -- (T2T3T4)

(40)

+ 1 2
40320 (T2T3T4T 5)
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with the restriction that Tj << . Figure 3 shows typical correlation coef-
ficients calculated using Equations 38 through 40 and the computer program MESO.
These curves show how the calculation breaks down for large spatial distance
(large Tj) because only a finite number of standard deviations are accurately
obtained from a measured elevation profile. In other words the use of a trun-
cated series restricts these results to small values of spatial distance a

Power Spectra. The power spectrum measures the frequency content of a
random process. It is defined as the Fourier transform of the autocorrelation
function as follows

11 ,13

I * (R(a)e-ika d (41)
n 7T j n

Rn(a) fP*(k)e kodk (42)

where

k - 2wQ
= spatial frequency

n - 0, 1, 2, ,.

The definition of the power spectrum is physically valid only if the average
values of the random processes have Physical significance, because according to
Equation 13 , the average values En appear in the definition of the awt-, &cor-
relation functions Rn(a) .

However, for the mesoroughness description the autocovariance functions
Cn(a) are of more physical interest because elevation profiles are measured
from an arbitrary baseline and this leads to arbitrary average values E for
the mesoroughness profile. The autocovariance functions, however, describe the
mesoterrain roughness relative to the average values, i.e. it takes the average
values to be the baseline and therefore describes zero mean random processes.
For terrain roughness descriptions the power spectra of physical interest are
defined by the following Fourier transform pairs

f C(a)e-ikada (41a)Pnk 71 f Cn

C (CL) ( k)eikdk (42a)
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where

k 2ff

Equation 41a is the formal definition of the power spectra for mesoter-
rain displacement, slope, curvature, etc. This equation can be used to deter-
mine Pn(k) provided Cn(a) is completely specified for all a , and this is
never the case for actual terrain elevation data. In particular the integral
(Equation 41a) converges only if Cn(a)+O for large a , i.e., Cn(a) must be
known for large a and must approach zero in this limit. This precludes using
the series expansion in Equation 26, which is valid only for small a , because
in this case

n 2a~Pn(k) __a-- (-1)Jj CL2j e-ika da

J=o --

(43)

2a2

7- - (-l)JS (k)nj j
J.0

where

Fj(k) -f L2j cos (ka)da (44)

0

The integrals Fj(k) do not converge, so that the power spectrum cannot be ob-
tained from a power series expansion of the autocovariance function.

The use of a finite set of data points precludes the complete determina-
tion of Cn(a) using Equation 14 and therefore Pn(k) cannot be determined
for the full range of frequencies 0 < 9 <- by using Equation 41a. A finite
set of data points results from the finite length L of the elevation profile
and from the fact that the elevation profile is measured at intervals AL = L/N
so that the limits on the domain of definition of Cn(a) tre AL < a < L
Then the spatial frequencies have the following bounds L-  < a < (AL)-1 , so
that the lack of information about Cn(a) for large a leads to a lack of in-
formation about Pn(Q) for small a , while the lack of information about
Cn(a) for small a leads to an uncertainty in the values of Pn(I) for high
frequencies. The upper frequency limit (2AQ -  often occurs in information
theory and is called the 

Nyquist frequency.fo

In order to determine the behavior of Pn(M) for 0 < 1/L and fir
Q > 1/AL a model approach for the mesoterrain roughness power spectrum is
adopted. The procedure uses the following mathematical model for the power
spectra of mesoterrain displacement, slope, curvature, etc.

1 ,2
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po(9) - C9-2 + Da-3 + EQ-4 (45)

P ( 2) - (1)2fl2 r - 2 Po(E) (46)0

=^ .24r) sin (irlAL)] 4  46

P2 () - (2wr) 44 sin 4 P(a) (47)
2 n_,fAL 0 ft

2n 2n [sin (rAL) 12n
n L aAL J P (48)

The coefficients C , D , and E of the three-
parameter power spectrum model are evaluated from the values of ao , al f
and 02 that are obtained from detrended (and in some cases undertrended) ele-
vation profile data measured at intervals of length AL .l,2 This model pre-
dicts the five basic types of power spectra that are shown in Figure 4.
Spectral types 3 and 4 exhibit no trend, so that for these cases it is possible
to use undertrended elevation data to determine the power spectrum.1' 2 The
five spectral types can be used to classify mesoterrain areas.

3. MESOTERRAIN COVER AND MOBILITY PROBABILITIES. The main objective of
this paper is the development of a quantitative method for estimating the ef-
fects of a specified mesoterrain roughness on the survivability of a vehicle on
a battlefield. Survivability depends in part on the mobility and cover charac-
teristics of the mesoroughness. The mobility characteristics are described by
the degree of slopes expected to be encountered, while the cover afforded a
vehicle is described by the expected amplitudes and widths (wavelengths) of the
hills and holes of the mesoroughness.

This part of the paper uses the terrain descriptors defined in Part II to
calculate the probabilities for encountering specified values, and ranges of
values, of mesoterrain elevation and slope. For the description of available
cover the specified value of the mesoterrain displacement is the depth of a
hole, generally equal to the vehicle height or larger, which will afford cover
to a vehicle. For mobility considerations a critical slope may be specified
which would limit a vehicles performance.

As described in Part II the mesoroughness elevation variation and its
derivatives are described by stochastic variables whose parameters are the
standard deviations ao 0 1I , a2 ... of the displacement and its deriva-
tives. For the calculation of cover and slope probabilities, a Gaussian dis-
tribution is assumed for the random variables of terrain displacement and its
derivatives.

Two kinds of probability index are calculated in this paper: (a) the
probability of finding a given mesoroughness elevation and slope at a fixed
point in the battlefield area, and (b) the probability of encountering a speci-
fied mesoroughness elevation and slope in a specified small interval of the
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battlefield terrain. The first probability is useful in the case where the
vehicle motion (or travel time) is not important; while the second type of
probability is used for moving vehicles looking for a covered firing position.
The two situations are quite distinct and an area having large probability of
cover at a fixed point in the area may exhibit a relatively small probability
of finding cover in a specified small distance interval.

For a fixed point in the battlefield the probability of cover can be
evaluated if the standard deviation of mesoroughness elevation o is known
for the area which contains the point. The probability of a moving vehicle
finding cover in a specified interval will also depend on the spatial frequency
content of the mesoterrain roughness. Thus a relatively smooth area (of long
wavelengths) will afford less cover in a specified interval than an undulating
area (of shorter wavelengths) with the same standard deviation of mesoroughness
elevation. The calculation of the probability of finding a specified elevation
(cover) in a given interval will be shown to depend on a1 as well as 00 , so
that for the case of a moving vehicle looking for a covered firing position the
standard deviation of slope is a critical terrain roughness descriptor.

The probability of encountering a given mesoterrain elevation or range
of elevations (cover) in a specified interval of distance corresponds to finding
cover in a corresponding specified interval of time given by a - Ut , where
a i specified distance, 1 - vehicle speed, and t - specified time . If the
time interval is taken to be the time interval between successive rounds fired
by an enemy gun tf s then the vehicle had better be able to find cover in the
distance of - Itf else its chances for survival will be small. Therefore it
is of practical value to calculate the probability of finding cover in a speci-
fied distance in terms of the roughness descriptors and to use these probabili-
ties as an index to delineate areas of a battlefield having different degrees
of cover.

In a similar way it will be shown that the probability of encountering a
specified slope in a given interval will depend on the standard deviation of
the second derivative 02 as well as on the standard deviation of the slope
a1 . Therefore for mobility problems over short distances in a battlefield the
curvature roughness parameter is as important as the slope roughness parameter.
This probability is important to assess the possible values of slopes that may
be encountered in a dash for cover in the interval cf = tf *

Probability Density Functions for a Point in the Battlefield. The calcu-
lation of probabilities of finding specified values of the mesoterrain eleva-
tion and its derivatives at a point in the battlefield requires the calculation
of probability density functions and probability distribution functions.

11 ,13

These functions are commonly used in probability theory. Of particular inter-
est to military problems will be the probability of encountering specified
values of elevation and slope.

This paper assumes that the mesoterrain elevation, slope, curvature, and
all higher derivatives are independent stationary random processes whose dis-
tribution about their mean values are given by Gaussian probability density
functions defined by
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M U. e n ),/2 (49)
n

If the stochastic variables are measured from their mean values by
= n - , the zero mean Gaussian distribution is given by

-V 2 2a 2

eG2/(e 22 (50)
n

where as defined in Part II the variables En and *n correspond to the
detrended elevation profile assumed to describe the mesoroughness as follows

en - n'th derivative of mesoterrain roughness elevation measured from
arbitrary level

n - n'th derivative of the mesoterrain elevation measued from its meanvalue

Only the standard deviations on are required to describe the Gaussian dis-
tributions. The probability density functions determine the probability of
encountering a specified value of Cn"

The probability density functions have the following properties for
n = 0, 1, 2, 3,

J p ()d9n . 1 (51)

(n)d M (52)
<n /J~nPG n gn n

nPM(&n)dn a 2 (53)

and for the zero mean probability density functions

J PG(n )d* - 1 (54)
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f OfvfPG (on dof n= 0 (55)

0 2 p fnP(on) don - 2 (56)

M

Typical shapes of the pG(En) and p G(n) functions are given in Figure 5a.

A futher descriptor of the zero mean Gaussian distribution is the average
of positive values only of the stochastic variables

aa

Kn> -fnP(on )do nn (55a)<* 0

Therefore on/V"1r is a measure of the average amplitude of the variation of
the stochastic variables about its mean value of zero.

If joint probabilities are required it should be remembered that the
derivatives n are not completely arbitrary in the sense that a. * a1
C2 , 03 , etc. are not completely independent.

1'2 Therefore the Joint distribu-
tion is not simply the product of two or more proability density functions, but
requires the introduction of correlation coefficients between the various
derivatives.11 ,13 This has not been studied in this paper.

Probability Distribution Function for a Point in the Battlefield. The
probability distribution function defined for the zero mean Gaussian distribu-
tion is

Bn 2 /(2 2

G n d n
n-o

(57)
On

JfPG(n)d*n

where n  a specified value of n for n 0 1, 2, 3, .... This function
determines the probability that 0nn< 8n 1113

Prob ( n  n) P G(n) (58)
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The probability that n > 8n is then given by

Prob (*n > B) I - G(Sn) (59)

The probability distribution functions for Gaussian distributions are often
written as

P = erf ( + (60)

where the error function erf(x) is defined as13

x 2

erf(x) = - e- feZ /2dz (61)

0

A graph of the function erf(x) is shown in Figure 5b.

Probability of Cover for a Vehicle at a Point in the Battlefied. The
zero mean Gaussian probability distribution representing the mesoterrain eleva-
tion variations can be used to estimate the probability of finding cover for a
vehicle at some point in a battlefield. The condition for complete cover is
assumed to be that the vehicle sits in a depression whose depth is equal or
greater than the height of the vehicle 4#o < - H , where H = vehicle height
(see Figure 5c). The probability for finding cover is

Prob ( - H) = PG(-H)

+ erf(-H v/ o ) (62)

1 erf(H/ao)

A typical graph of the function PG(-Rv) is given in Figure 5d. The relevant
msoroughness parameter is the standard deviation of the mesoterrain elevation.

Slope Probability at a Point in the Battlefield. For slope probabilities
the situation is somewhat different because both positive and negative values of
these parameters must be considered. The probability distribution function for
slope is expressed in terms of a critical slope * such that mobility is pos-
sible for 1* < * . The probability for slope *l being outside this range

4 is
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C

Prob < -o or > e

1 1

( ) (63)
+ e d &1

S2PG(-) 1 i - 2 erf( /o)

Then the probability for Ioll < *i is

Prob (I*,D1I < c 1 -2 PG (-oc) 2 erf (i1/ol) (64)

and this can be used as a mobility index. This function appears in Figure 5e.
A similar analysis can be done for the curvature and higher derivatives.
Wheeled vehicles have = = 0.3 and tracked vehicles have c =i 0.45

The situation of a moving vehicle seeking cover in a specified distance
and of encountering a specified range of slopes in this interval can also be
quantified by the theory of probability. The probabilities of encountering
specified values of mesoterrain elevation and slope in a given interval can be
expressed in terms of the autocovariance functions defined in Part II and in
terms of the standard deviations of the elevations and its derivatives.

Probability Density Functions in an Interval of Travel. The probability
density functions for encountering specified values of the zero mean Gaussian
ra dom processes in ,given by n n ,in a small interval a are given
byff

2 [Cn(0) - Cn()] e-/2( n/On) 2

Pn(a )  C (0 (65)

n

where n - 0, 1, 2, 3, ...refer to the mesoterrain elevation and its deriva-
tives. These probability density functions can be rewrittn in terms of the

"j correlation coefficients defined in Equation 16 as follows
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-1/2(8 n/ n)2

pn(a) - 2 [1 rn e

n
(66)

1 2[ rGOna)ffi 2i - rcIpG(n,on)

The probability density functions can be rewritten in terms of the stan-
dard deviations using the power series expansions in Equations 25 and 27 as
follows

-12(n /on )

n

where

= 2 a 1~ 2 a n2 o2 2 n3 c4

24 (-.)i2 (68) .

where S is defined in Equation 31.

The probability density functions can also be written in terms of the
dimensionless wavelength parameters Tn given in Equation 35 as follows

T 0 -1/2( n/an)2

TO nn
p a n ne i/io(69)

where
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P M n /2(1 r n
fn T n 27r T

n n

2 2  2 2 2 (nl+ 2T+)

= I - ,4 n+l 6 ! (T n Tn 2 ) n+2 n+31 T) + "'

(70)

+l ~ (l)1j+1 2 (T T T T )2
(2j)' (Tn+iTn+ 2 n+3 ' n+j-1

=Il + li (-l)J+l (2) ) 2L] Snj2(j- I)
SJ=2 C2-.nj

For reference, the first few n aren

4! 12 6 222

2 2 2 2 2 2(71)

1 1-2TT2 + (T (T 2 ) -8-T (72)

2 2 2 (3)2 2 (345)

- T3 +- (TT 2 _ i-T TT 2 + (73)

For small values of a the values of Pn are nearly unity.

The probability density functions (Equation 69) for an interval in the
sesoterrain can be written in terms of the Gaussian probability density func-
tion as follows

n r1 nPG (n' n A nPG(On, On) (74)
n n

Consider now the special cases of mesoterrain elevation, slope, and curvature

po(a) " (0--ap ( O 0) -' 0  OP(00'aO) (75)

( .2  2a (

al( 1 'i l 'l) - i ¢lPG(BI'O1) (76)
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aa2 (B 2aP2a IT °2 2PG( 2 °2) _ 2 2G(82' 2)77

A result similar to Equation 75, but involving the power spectrum, has already
appeared in the literature.14 From Equation 75, it is clear that in addition
to the elevation Gaussian probability density function pG(8o o ) , a spatial
frequency term 01/o o appears in the expression for the mesoterrain elevation
probability density function. Therefore, to first order the standard devia-
tions oo and o , determine the elevation probability density function. The
standard deviations of the second and higher order derivatives enter to a les-
ser degree through the function to . Likewise Equation 76 shows that the
probability density function for encountering a specified slope in a given in-
terval is proportional to 02/al in addition to the slope Gaussian probability
density function.

Probability Distribution Function in an Interval of Travel. The probabil-
ity distribution functions associated with the probability density functions
given in Equation 74 are

8
n

PO n) JPndftn

8
n
,an+l n PG(9n, LYndvn 

(78)

an+l_n P( 0)
r a (n) " ' DnPG n

where P G(n) is related to the error function as in Equation 60.

Cover Available in a Specified Interval of Travel. The probability of
finding cover for a vehicle of high Ev in a specified interval of the meso-
roughness is calculated in terms of the probability distribution function
(Equation 78) as follows

Prob( ° <-Hv) P(-Hv

aal1t o 2- (H 0 PG(-H) (79)

o G oG v
0 0

=-I: [I - erf(Hv/o)]
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The probability for finding cover in a specified mesoterrain interval depends
on 01 as well as 0o  through the ratio 01/0 o '. 1/Ao . In other words Equa-
tion 79 shows that for the same values of 0 o  the mesoterrain containing
longer elevation wavelengths affords less cover in a specified distance. The
standard deviations of the second and higher elevation derivatives also in-
fluence the degree of cover through the functions D defined in Equation 71.

0

Degree of Mobility Possible in a Specified Interval of Travel. The
problems of determining a mobility probability index for mapping purposes
amounts to calculating the probability that 1i11 <pq in a specified interval,
where *c - critical slope beyond which a vehicle cannot go. This is calcu-
lated as follows

Prob~t < -qi or ~l> c) f pd1 If pd

11

- C

7 2a2----1 PG(-*cl

(80)

2A1o 2 1 G1

2--erfOiTo 2

Then the probability of finding slopes less than the critical slope is given by

= 21 c2 4aProb1* 11 <~l iO f (*Cla)f0 er

(81)1C Ir - c/

Xc~ 1 G(-W*)]

The probability of encountering a critical slope in a mesoterrain inteval
depends on 02 as well as on a1 through the characteristic slope wavelength
02/01 -- i/AI . The standard deviations of the third and higher derivatives
also affect the calculation, but to a smaller degree, through the function 0i
defined in Equation 72.

Average Distance Between Covered Positions and Between Points of Critical
Slope. The average distance that a vehicle would have to travel between two
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covered positions and between two adjacent points where the critical slope
value occurs can be estimated from the values of the characteristic mesoter-
rain elevation wavelength Xo and the characteristic mesoterrain slope wave-
length X1  that are given in Equation 32. The simplest assumptions give the
following results

H H
a --I= 2 _v (82)

0 00 0r a

1 2

al -i"1= 22 (83)

where

a= average distance between two adjacent covered positions for a ve-
hicle of height Hv

=I ffi average distance between two slope mobility failures for a vehicle
whose critical slope is 'i *

Numerical Analysis of Terrain Roughness Probabilities. Macroterrain ele-
vation data were available for only two terrain sites - Freiensteinau and
Wetzlar both located in West Germany. A 1-mile section of macroterrain eleva-
tion data was selected from each site. Smaller sections of 100-m length within
the one mile sections, the mesoterrain elevation profiles, were analyzed and
the results compared the descriptors of the full 1-mile section.

The standard deviation of the detrended elevation can be used as a measure
of the relative roughness of the Freiensteinau and Wetzlar sites. These stan-
dard deviations appear in l ure 6a in terms of the reciprocal of the detrend-
ing parameter. In terms , this descriptor the Freiensteinau site is about
four times more rough than the Wetzlar site. Nevertheless, as seen in Fig-
ures 6b through 6d, the characteristic wavelengths X and XI  are roughly
the same for the two sites. o

The power spectra of the terrain displacement were calculated using Equa-
tion 45 and the techniques developed in References 1 and 2. The results ap-
pear in Figures 7a and 7b from which it is clear that several different types
of power spectra can occur for the 100-m sections within a 1-mile terrain ele-
vation profile. Therefore the power spectrum type will vary along a terrain
section, and the mesoterrain roughness power spectra is expected to be dif-
ferent from the macroterrain roughness power spectra.

Figure 8a shows the Gaussian cumulative probability for terrain eleva-
tions as calculated from Equations 60 and 62. Figure 8b shows the results of
using Equation 62 to calculate the Gaussian cumulative probability for finding
cover for a vehicle of height lv = 8 ft in terms of the detrending parameter
X . The detrending parameter enters the probability calculation through the
function ao(A) given in Figure 6a. Equation 79 is used to calculate the
cumulative probability for finding cover in a 1-ft unit interval, and the
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results are shown in Figure 8c. A peak occurs in the Freiensteinau probabil-

ity curve in Figure 8c because the probability varies inversely with Xo as in
Equation 79, and Xo is a rapidly decreasing function of A-1 as given in

Figure 6b.

Figures 8d through 8f give the probability distribution functions for
encountering critical slopes using Equations 63, 80, and 81. The critical
slopes were taken to be 0.3 for wheeled vehicles and 0.45 for track-laying
vehicles. The standard deviation of the slopes at the Wetzlar and Freinsteinau
terrain sites are about an order of magnitude smaller than the critical slopes
so that the probability of encountering these critical slope values is vanish-
ingly small. No terrain data is available for a site which would exhibit high
probabilities for encountering the critical slopes. In order to obtain some
numerical results the elevations at the Freiensteinau and Wetzlar sites were
arbitrarily magnified by a factor of 10. Figures 8d through 8f give the
critical slope probability distribution functions for this artificial situa-
tion. However since relative probabilities are of interest, it is clear that
Freiensteinau has the higher probability for encountering a critical slope
value.

Mobility and Cover Map Overlays. The cover and mobility probabilities
can be used to construct military map overlays on which areas having distinct
mobility or cover characteristics are isolated to form a patchwork. Each
patch of a map overlay for a specified vehicle is associated with a probability

index of cover or mobflity as calculated from the standard deviations of the
elevation and its derivatives. Several elevation profiles are measured for
each area to determine a descriptive set of values for ao I aI , 02 , and
so on. In this way map overlays can be produced in a logical fashion from
some elevation profiles measured in each area.

4. CONCLUSIONS. This paper develops a formalism for developing cover
and mobility map overlays. The formalism is based on a rigorous application
of probability theory to the description of random terrain elevation data.
Terrain descriptors obtained from elevation profiles measured in a battlefield
area are used to develop cover and mobility indices for the purpose of de-
termining patches on a map .verlay having distinct cover and mobility
characteristics.

The studies of mesoterrain roughness gave the following conclusions:

a. The mesoterrain roughness can be extracted from a measured elevation
profile by a detrending procedure with a proper choice of filter

constant (Part II).

b. The basic set of terrain descriptors required for the complete speci-
fication of mesoroughness are the standard deviations of the meso-
terrain elevation and its derivatives (Part II).

c. The probabilities for encountering specified ranges of mesoterrain
elevation or slope in a given distance can be determined from the
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standard deviations of mesoterrain elevation and its derivatives, and
these probabilities can be used as indices for determining patches
on a map that have distinct cover and mobility characteristics
(Part III).

5. ACKNOWLEDGEMENT. I wish to thank N. R. Murphy, Jr., C. J.
Nuttall, Jr., and J. H. Robinson for their helpful advice. The computer program
RFNWUD was developed by R. B. Ahlvin.
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INTERVAL BOUNDS FOR STATIONARY VALUES OF FUNCTIONALS

L. B. Rall
Mathematics Research Center

University of Wisconsin-Madison

ABSTRACT. A number of important problems in applied mathematics can be re-
duced to finding stationary values of functionals (maxima, minima, and critical
values). For functionals defined in terms of integrals, the method of interval in-
tegration provides a way to obtain interval (two-sided) bounds for thr stationary
values. As a special case of this method, upper and lower bounds for genvalues
of linear operators can be obtained. The inclusion of stationary val in inter-
vals is based on the use of interval functions which include the funcl .. for which
the functional is stationary, and its derivatives. A simple way to c, ruct such
interval functions is given, and examples are presented of a minimum eigen-
value problem. The improvement of initial results by iteration is in, d.

1. VARIATIONAL PROBLEMS. A number of important problems in physical mathe-
matics and applied analysis, particularly the calculus of variations and control
theory, reduce to finding maxima and minima of functionals

(1.1) f = f[y], y E A,

where A is the class of admi.64iLbe 4unctionA for the problem. In addition to the
ext'emat vatues

(1.2) f= mnff ,= ax y},

of f, one may seek its cA ticat uaue6

(1.3) f* = fly*),

where the cl'it(caC p('it y* C A of f satisfies the EuteA equation

(1.4) f'[y] = 0,

it being assumed in this case that the GAteaux derivative f' of f exists on A [5].

Under this assumption, exttema. po int y,y E intA such that f = f[y], f = f[y)] will

be critical points of f (see [21). For simplicity, extremal and critical points and
values of a functional will be called its t0tionay points and values, respacttve-
ly. A ua a. !ona. p'tObtem for f on A is to find one or more of the pairs (.,y),

(f,y) , (f*,y*) , if such exist.

An inteAvat bound for a stationary value f* of a functional f is simply an
interval [a,b] such that f* E [a,b], that is

(1.5) a < f* < b.

Research sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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For functionals defined in terms of integrals, such as

xl

(1.6) f[y] f f(x,y,y',y",... ,y )dx, y G A,
x
0

it will be shown that the method of interval integration [1], [41, provides a
way to obtain interval bounds for stationary values of f. In the variational
problem for f defined by (1.6), the class A of admissible functions is usually
characterized by continuity, differentiability, and boundary conditions on y.

It should be noted that one-tided bounds for extremal values are easy to
obtain: For arbitrary 9 E A, one has

(1.7) f < f[@] ( 9 .

Lower bounds for minima and upper bounds for maxima, however, are often not easy
to obtain, and in the case of nonextremal stationary values (such as intermediate
eigenvalues of a linear operator), one is often completely in the dark. The two-
sided bounds (1.5) furnished by interval integration are easy to compute, by con-
trast, as will be seen below. The methodology will be developed for functionals
of the form (1.6) for clarity, and its immediate extension to several independent
variables will be presented in the final section.

2. INTERVAL INTEGRATION. Interval analysis [3] is the branch of mathematics
which takes real bounded intervals [a,b] as its basic units, and studies trans-
formations of them. Its relationship to real analsis is somewhat analogous to
that of co:-plex analysis, since the reals can be identified with the subset of
intervals which have equal endpoints, the so-called degeneAate intervals x = [x,x]
for real x. An inteau function Y of a real variable x assigns the interval

[y(x),y(x)] to each x in its interval of definition X = [x 0,x ]. The inteAvat

integiat of Y over X is the interval

xI  x1

(2.1) fXY(x)dx = [(LD)f y(x)dx, (UD)f y(x)dxl,
x0  x0

where. (LD) and (01)) denote lower and upper J)arboux integrals, respectivly [1]

Since thce Darboux integrals exist for all real functions, it follows that all
interval functions are integrable, and hence integration is a universal operation
in interval analysis [1].

In the study of interval transformations, the transformation T of X into T(X)
is said to be monotone if x C Z - T(X) C T(Z), and a transformation u inctudet

T on X if T(X) C U(X), in particular, if y is a real function, then the interval
function Y includes y on X if

(2.2) y(X) = {y(x) I x E X} C Y(X)

[3]. In this sense, the interval function Y is the set of att real functions y

such that y(x) _ y(x) y(x) for x E X, and one writes y E Y in this case. The

interval integral (2.1) is a monotone function of its integrand [1], so that
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xI

x X1

(2.3) f y(x)dx C f Y(x)dx for y E y,
x0  x0

whether or not y has a real (Riemann or Lebesgue) integral. The real integral
of a real function, if it exists, is of course contained in its interval integral,
which always exists [1], [4]. The calculation of the interval integral of Y is

simplified if the endpoint Aunction6 yy of Y are Riemann (R) integrable. Then,

(2.4) fxY(x)dx = [(R)fyx(x)dx, (R)f xy(x)dxj,

so that inclusions of interval integrals can be computed for integrands Z D Y
with Riemann integrable endpoint functions [1].

3. INTERVAL BOUNDS. Considering the integrand of (1.6) to be a function
f(x,u0 ,ul,...,u n ) of n + 2 variables, an interval inclusion F(X,U0 ,U1,... ,Un)

of it can be constructed by interval arithmetic [3] or otherwise. Then, interval
integration provides the following result.

Theorem 3.1. Suppose that 9 E A is a stationary point of the functional f
defined by (1.6), A = f[9] is the corresponding stationary value of f, and the
interval functions Y0, Y1 ,..., Y on X = [x0 ,XI] are such that ( W G , i1

0,1,...,n. Then

x1

(3.1) A E [a,b] = f F(x,Y 0(x),Y (X),...,Y n(x))dx
x 0

This result provides the two-sided bounds (1.5) for A immediately. It ap-
pears that one must assume a lot about 9 and its derivatives to use (3.1). In

(n)
many cases, however, one only has to assume something about ) (for example,
that it is bounded), and then the interval functions Y V1 . Y0 can be

constructed by the use of interval integration and the boundary conditions. For
example, suppose that

(3.2) 9 (n) G gn' 9(n-l) (X0) IF [a 0 0] 9(n-1) (XI) E [Cal 1].

Note that inteAvat boundary conditions can be prescribed. Thus, interval tech-
niques can be useful in practical problems in which boundary conditions are not
known precisely, or in which it is desired to study the behavior of a system over
a range of boundary conditions.

Indefinite interval integration of (3.2) gives the functions

x x
(3.3) YL(X) = [Ct0 ,0] + f Yn(t)dt, YR(x) = [Ni,0I I + f Yn(t)dt.

x x
0
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Definition 3.1. The interval function Y is said to be adm"jIbtee forn

the boundary conditions (3.2) if [cal,,1] C YL (x1 ), [a O tO] C YR(xO), and the

intersection YL (x) fy R(x) is nonempty for x E X.

Theorem 3.2. If the interval function Y is admissible for the boundary

conditions (3.2) and 9 (n) E y n then

(3.4) 9(n-l ) E gn-1 = yL yR"

Proof. By construction, the interval function Y n- defined by (3.4) con-

tains all real functions g such that g' E Yn g(x0 ) E [( 001 and g(x1 ) E [aI,81],

as a consequence of the definition of the indefinite interval integral [1]. QED.

It should be noted that Yn-1 constructed in this way also contains other

real functions which satisfy the boundary conditions, but may have no continuity
or differentiability properties at all. An example of the actual construction
of an interval function of this type is given in the next section.

4. THE SIMPLEST PROBLEM OF THE CALCULUS OF VARIATIONS. This is the case
n = 1 of (1.6) (2], and to simplify matters further, the boundary conditions

(4.1) y(x 0 ) = yo' Y(XI) = YI

will be imposed. The class A of admissible functions will be restricted to those

for which y' is bounded, that is, y' E [m,m], where m,m denote constant interval

functions with the corresponding real value. Interval integration gives

(4.2) YL (x) = y 0 + [m,m] (x - x0 ) , YR(x) = 1 - [ro,m] (x - x ,

and thus Y1 = (m,ml is admissible for (4.11 if

Yl - Y 0
(4.3) m < m < M, m = -x

X1 -X0

The graph of the corresponding interval function Y0 is thus a parallelogram with

vertices (x0,y0 ) and (xlyl), bounded above by the intersecting lines

(4.4) y(x) y + M(x - x ) y(x) = y ( - (x - xl),

and below by

(4.5) kL(x) = Y0 + m(x - x 9 ), 9 Y(x) = y1 - m(x - xl)
i1

using this interval function Y0' one has immediately that
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x1

(4.6) fly] E f F(x,Y 0(x),[m,m])dx
x 0

on the class A of functions satisfying (4.1) for which y' E [m,m]. For example,
suppose that

x1

(4.7) f y] = /i 7 y' + x,
x
0

and one seeks A min{f[yl} on A. Since

(,2 E2,-2(4.8) (y) E (0, maxfm_ ,m 2],

one has

x
I(4.9) X x1 -x0oId I d--f ) A_ '+ x /( +G 7

x0

since each admissible Y contains y' = m, and thus each Y0 contains the degen-

erate interval (real) function

(4.10) Ym(X) = y0 + m(x - x ,

for which the value f[ym] = d is attained. Better lower and upper bounds for this

value are obtained as Y encloses ym more tightly.

5. EIGENVALUE PROBLEMS. For selfadjoint linear operators A in a Hilbert
space H, eigenuv.aueA are critical values of the Raqt.igh quo 5ient

(5.1) R(y) = (Ay,y)/(y,y), y # 0.

An eigenvalue X satisfies the Euler equation

(5.2) Ay - Ny = 0, y 7 0,

and the corresponding critical points y in a function space H are called eigen-
func/tJn oA of A belonging to X 12]. If the inner product ( , ) in H is defined
in terms of integrals, then interval integration can be applied as above to find
lower and upper bounds for eigenvalues of A. If Y0 ' Y are interval functions

such that 9 E Y0' 0 E Y0' and A E Y for some eigenfunction 9 of A, then

(5.3) A E (y 1 Y 0 )/(Y 0 ,Y 0 ) = [a,b]

for the corresponding eigenvalue X, thus giving an interval bound. Once ag4in,
the interval functions Y0 " Y1 are to be determined in some way, perhaps on the

basis of an approximate solution of (5.2). If A is an integral operator, then
one can use interval integration to get Y = AY0 On the other hand, if A is a

differential operator, it may be possible to obtain Y0 from Y by use of interval
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integration and the boundary conditions, as before. For example, suppose that

(5.4) Ay = -y", y(O) = y(n) = 0.

Since eigenfunctions are determined by (5.1) and (5.2) only up to a multiplicative
constant, it is useful to introduce a normalization condition which excludes y = 0
in particular. In this case, suppose that -y"(r/2) = 1, and take Y1 defined by

(5.5) Yl (0) = 0,11, yI(x) = 1, 0 - x V, 71)

(y1 (x) is an interval step function [1]), and

(5.6) Y(x) (2/T )X, 0 - x 7T/2 , Yl(x) = (2/s) (n - x), 7/2 < x < T.

By integrating Yl(x) twice and using the boundary conditions in (5.4), one gets

Y defined by
0

(5.7) (x) =( - x), 0 x ,

and

r( -) O -x ti/2,
I 3

(5.8) YO(x) =

rx (-x) 2) /2 x i.
S- 4 3ur

Computation with these interval functions gives

3 1 15 1

(5.9) (ylY = T31, 1 1 (0,Y 0 ) 5s 17 1].

and thus eigenvalues A belonging to eigenfunctions 9 E Y0 will be elements of the

inteAvat Rayteigh quotient (Y 1 ,Y0 ) /(Y 0 "Y0 ) , that is,

20 1i 21
(5.10) E E A0 = 20.[1-'-, ] C [0.4052, 2.5033].

In this case, 9(x) =sinx is the only eigenfunction of A contained in Y0, and

(5.10) provides lower and upper bounds for the corresponding eigenvalue A = 1.

The endpoint functions (5.5) are crude approximations to sinx, and it can be
noted that (5.7) and (5.8) define an interval function which, when normalized,
is smaller than Y1 and bounded by better approximations to the eigenfunction. This

suggests an iteration pxocess, the next step being to take (2/7)2Y0 = Y1 as a new

interval function containing -9", which leads to an improved Y0 and a corresponding

value A1 for the interval Rayleigh quotient. Indeed, if A C A , then the existence
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of an eigenvalue A E A1 of A is guaranteed by the Schauder fixed point theorem [5].

6. VARIATIONAL PROBLEMS IN SEVERAL DIMENSIONS. The extension of Theorem 3.1
to problems in several independent variables follows immediately from the corres-
ponding extension of the interval integral. In R , let x = (lfc 2,...,), and

the region of integration be denoted by Q. Following the prescription given in
[1], partition Q by elements Q 2? ...2'' Qm with measures (areas or volumes)

dS2., i = 1,2,...,m, and let

(6.1) VY. = f{Y(x)l SP fY(x)1],
1 XE2.

where Y is an interval-valued function defined on 2. If V denotes the set of
m

all partitions of Q into m subregions, then

m
(6.2) E= n [ VY..d., m = 1,2,3,...,

m V i=l 1
m

form a nested sequence of closed intervals, and thus the interval integral of
Y over 2,

(6.3) f£Y(x)dQ = n )m
m=l

exists for arbitrary Y. It is not difficult to show that this interval integral
is an inclusion monotone function of its integrand using the same arguments as
in [1].

Now, one can let D. denote the vector of partial differential operators of
1

order i in RX, for example, D1  ), and consider the func-

tional

(6.4) f[y] = fSf(xly,DIY,D2y , ... ,Dn y)dQ,

which is the analogue of (1.6) in RV. If F is an interval inclusion of the inte-
grand of (6.4), and A = f[9] is a stationary value of f, then interval integration
provides the following result.

Theorem 6.1. If is a stationary point of f and interval vector functions
Yo Yl'* Y n exist such that D i E Yi on S1, i = 1,2,...,n, then

(6.5) A = f[91E SfF(x,Y (x),Y (x),...,Y (x))dQ.

As an application of this theorem, suppose that in R3 the values of y are
prescribed on the boundary aQ of a region f2, and one wishes interval bounds for
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(6.6) A = mn f (2 y/;)2 + ;2 y/:)l2 + 2 y/,12 )dQ

over some class A of admissible functions. A construction similar to the one
in 53 can be used, or Y can be constructed on the basis of an approximate solu-

0

tion of the Euler equation for (6.6), which in this case is simply the Laplace
equation

(6.7) Ay = 0, y = y0 on X.
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O A SPATIAL DOMAIN WALSH FEATURE SET

Charles R. Giardina
Electrical Engineering and Computer Science Department

Stevens Institute of Technology

hloboken, N.J. 07030

Frank P. Kuhl
Fire Control and Small Caliber Weapon Systems Laoratory

ARItADCOM
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T. A. Grogan and 0. Robert Mitchell
School of Electrical Engineering
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AB1STIACT. A truncated Walsh Series is utilized as a feature set for chain
encoded imnges. The number of terms used in this series is directly related by an easy
to use formula to the number and type of vectors used in the encoded chain and the
accuracy desired. The resulting Walsh approximation is shown to form an -net for the
figure thereby preserving the information of the figure while smoothing out possible
noisy vectors. A normalization scheme is explained and examples given.

I. INTRODUCTION. The Walsh Functions are introduced as products of
lHademacher Functions and are used to represent projections of Freeman encoded boun-
dary ftinctions. Here the projections are approximated to within a prespecified degree
of ,ecu racy ( by piecewise constants using a Truncated Walsh Series. The heights of
these pieeewise constant portions are easily found and involve the area under the pro.
jections. A Walsh Feature Set is obtained by composing the piecewise constant Walsh
Approximations. This Walsh Feature Set by nature of the approximation forms an t-
ne-t for the original boundary. Normalization algorithms are then specified for both the
observable and prototypes in the recognition classes. Subsequently use is made of the
(-net property and the normalization scheme to describe a possible shape recognition
procedure.
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I. WALSH SERIES OF X AND Y PROJECTIONS. A Walsh series for the x
and y projections can be found exactly the same way a conventional Fourier Series is
fotn(d. Instead of expressing x or y in terms of faster and faster varying sine waves we
will express them in terms of faster and faster varying "square waves" - the Walsh
Functions.

The Walsh Functions form a complete orthonormal system of functions among the
square intgrable functions in the interval (0,11. They are defined below. The first
Walsh Function is Wo(t) = I, and the rest are defined by the following formula:

W.(t) = r.,+ 1(t) rn,+ 1(t) .... rn, + 1(t)

where the integer n > I is expressed "in binary" as

n = 2n , + 2n' + ... + 2n'

where the integers ni are determined using

nn < n2 < ... < np

and the rk(t) are the Rademacher Functions as follows:

r0(t) = I

rn(t) = - 1 1,1)1 204

rl(t+ 1) = ri(t)

rk+ 1(t) = rl(2kt) k = 0,1,2,...

In the following we will only discuss the x projection of the boundary because the same
calculations can be made for the y projections. The known projection x(t) can be
represented as an infinite series of the form x(t) = o 0 W 0(t) + aWn(t) + a 2W2(t) + ...
because we have a complete set. Here Wi(t) is the l Walsh Function and 0i is Intui-
tively the iA harmonic component and is called the iA sequency component. It is found

by integrating:

I

i= f x(t)Wi(t)dt
0

'wach ni is made up of the area under portions of the )rojection added and subtracted
rogether. In any practical application only a finite number of terms in a Walsh Series

can be employed - say the first 2 N. Ir only these terms are used, an error is made called
the truncation error. This error shall be discussed later. Let us assume that N > I has j
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been chosen and let

X2N(t) = a0 W 0(t) + 0,W,(t) + ... + G2 .1 W 2N 1(t).

Then we would expect x2N(t) to closely approximate x(t) in some sense particularly if N
is large since we have a complete set. This in fact is the case, and furthermore xe,(t) is
easier to work with on a computer than x(t) since it attains only a finite number of
heights and, therefore, will be used in defining a feature set for the image. The rest of
this discussion is dedicated to finding xn(t). A most simple method is given for deter-
nining xqN(t) at the end of this section. To find the sequency components it is con-
venient to represent them in vector form. So let 5. be a 2 N by I column vector where

o0

C12

This vector is termed the sequency vector and since each component of this vector
eq(uals the sum and difference of the area under x(t) on intervals of length 2

- N it is
desirable to first find what is called the Area Vector X whose components are just the
area under x(t) taken on intervals of length 2 -N; i.e.,

A.

A,

where each Ai is found by the expression

2N

A i = f x(t)dt i = 0,I,2,...,2N-I
i

The sequency vector is easily found by pre-multiplying the Area Vector by the lad-
damard Matrix IH, which consists of 2N rows and each row consists of 2N ones or -l's.
The i! -h row of this matrix is a vector representation of the At! Walsh Function, i.e., one

Ais used when Wi(t) equals one and -1 is used where Wi(t) equals -I in the intervals of

length 2 N .
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Specifically, assuming that each -ii = 1 and that the Walsh Function is
2N-I1

Wi(t) = -Ii j ._L_ (_(tj=O 1V" 2"

then the 0' row i = 0 ,1 ,2,... 2 N-I is

( OI i, 'A2 "" 2- 1)

In any case we have

Once ?;x has been found we can find the Truncated Walsh Series X 2 N(t). This series can

be obtained much more quickly if we use vector representation. A vect.or representa-
lion will lead to a direct computation of the truncated Walsh Series. Since x 2 N(t) will
attain at most 2 N different values and will be constant in each basic interval of length
2 N we can write

2N- I

The ci -re constants that can be found using either the above or by noticing, if we let

the vector X't2 be defined as

CO

cl

that

32 -

Where IIT denotes the transpose or the Iladamard Matrix. But, since II is symmetric
we have II = IIT and

Y = ll

Therefore,

3t2s = H2Xx,

but using the orthonormality properties of the Walsh Functions we obtain the impor-

tant conclusion that
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TV. 2N "

In other words the Truncated Walsh Series gives a staircase type function whose height
is proportional to the area tinder the projection in the corresponding basic interval; i.e.,

N2
N- I

X2 (t) 2N E A i X i I+ 1)
_= iN' 2N

or ci  2NAi

So to find X 2 (t) partition x(t) into equal intervals of length 2-N in [0,11 and find
the area under each basic interval and substitute into the lat. formula for xe(t).

IM. 7II !NCA TION ERR1101? FOR WAILSit EXI'ANSIONS. In the last section
we arrived at formulas that enabled us to find the truncated Walsh Expansion x2 N(t)

for the x projection x(t). If we define the error between x(t) and x2N(t) to be the abso-

lute maximum pointwise difference then we have:

l x(t)-x I t)ol = sup I x(t)-x 2 (t) N< M

where M is the maximum slope in the x projection. This follows from the more general
result If) that if x(t) satisfies a [folder Condition of order a, 0 < a < 1, with constant
M, that is if

J x(t+ h) - x(t)l <_, MI h'i  M > 0

for all t and I real, then

Sx(t)-x 2 "(t)I I < ((.) 2 N
(2tv- i )(2v}N + 

I

And, in particular if a = I (which is true if x(t) is piecewise linear), we have what is
commonly called a Lipshitz Condition or Holder I Condition for x(t) giving

M

X MX20 1 5 2 N+ I

IV. (-NET. An (-net ((> 0) for an arbitrary bounded image f(x,y) in [0,11 R x R is
another image W(x,y) in 10,1 R xR where

L
W(x,y) = U ((x.,yJI I).

rThat is, W(x,y) consists of a "finite number of black dots," and furthermore every
point in f(x,y) must be within away from sone point in W(x,y) in the vertical and
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horizontal directions at the same time. In other words, the nonwhite points of W(x,y)
are scattered in such a way that each nonwhite point of f~x,y) is no more than ( away
from some nonwhite point in W(x,y). So given any nonwhite point in f(x,y) - say
(XOI,,y , Udx,y,) > 0, there must exist at least one point in W(x,y) call it
(xi,yi)I I such that I x.-x i < t and I ye-y i -;

i.e., maxllx" -Xil, I yo-yJl 1<,

Since x(t) is the projection of a Freeman Encoded boundary x(t) is a piecewise linear
function that as a consequence satisfies a Lipshitz Condition with M equal to the max-
imum absolute slope among all linear segments.

The key fact about the Walsh Feature Set W is that it forms an c-net for the ori-
ginal image f. Let us describe this a little differently from previous sections with tile
help of the diagram in Figure I below.

a tM

Fig. I. Sketch of i neighborhood.

If we take any point say p on the original image f and draw a square as illustrated of
sides 2 centered about it, then since W is an t-Net for f there must exist a point w
from W in this square. However if W' is also an t-Net for the same image f then there
must also be a point w' in this same square. The conclusion to follow is the key to the
recognition procedure and it is that the farthest that w and be from w' in the
Euclidean Sense is 22t.
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V. DETERMINING A WALSH FEATURE SET. In this section we shall go thru
a step by step procedure for determining a Walsh Feature Set. In order to proceed we

must have two things. The first is a boundary say f(x,y) given in terms of a chain
enco(ling as described in reference 121. "'he second is c the maximum allowable error in
the x and y direction between f(x,y) and W(x,y) (The Walsh Feature Set) as explained
in section III or this paper.

IVA L,,1 FEA TUlJE SET ALGORITHM

I) For the given image f(x,y) find the x and y projections by traversing f at a con-
stant counterch)ckwise rate such that the traversal time is one unit. This step
is described in great depth in reference 121. The projections are denoted by x(t)
and y(t).

2) Using the desired accuracy t determine the number of Walsh Functions needed
for the truncated x and y expansions. Set N equal to the larger of n and k
where

n Iog2( )-J]

and k =

where Ix(t)- x(t) < MiL -

and J y(t) - y 1(t)J < 2- ".

an(d M and I, are Lipshitz constants for x and y respectively.

3) 'artition the absissa of x(t) and y(t) into equally spaced intervals of length 2 N

in 10,11 and in each of these intervals find the 2N by I Area Vectors as
ex)lained in section 1i of this paper. So we have

A0.

A. •~

A2,,- 1. A2N- ly

where each tuple is given by:

i+ I

2N

Ai.= x(t)dt i = 0 ,1,..., 2 N-!

2"
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Similar equations apply for Ajy.

Finally

4) Form the Walsh Feature Set

In vector form we have using Matrix Partitioning

2NAO, 2 NAoy

2NA,. 2NAIy
V., -=2N [ =

2NA 2N ix 2NA2N ly

or in function form.

2 N- I
W 2N(x,y) E , X((2"A.,2NA ,)}(xY)

k=0

In any case we see that W2N(x,y) "consists of dots" and does indeed approximate
the original image of f(x,y), and as explained in section Iv or this paper it forms an -

net for f(x,y).
We could have found W2!4(x,y) by first finding x2N(t) and yN(t) and composing the

two. Also X2N(t) and y2 N(t) can be found using the sequency vectors ; and 7iy but this

is more work than the procedure outlined above.

VI. NOIMAUIZA TION OF WALSII FEA TURES. To compare the Walsh feature
set of an unknown contour to a prototype, normalization with respect to translation,
scale, rotation, and shift in starting-point must be accomplished. The following
describes such a procedure. This procedure is not sufficiently general for all shapes to
have a unique normalization, but will serve as a basis for continued study. Other tech-
niques such as those using moment methods could also be employed 13,41.

While tracing the contour on a grid, the Freeman chain-code links are used to
store the contour information. When the shape is to be analyzed (recognized) the
chain-code is converted to a complex vector -Z+ iy and the arc-length for this piecewise
linear representation is calculated. The coefficients for the DC and first fundamental
ellipse for the - and Y projections are computed from the chain-code using the fast
l)FT method of Kuhlg,(iardina[2. The DC component, dc-(a0 + ib0 ) is equal to trhe
apea under the complex function " + iY divided by the arc-length. The scale factor,

s (a+ (11) 2 + (b, - c,), is the radius of the fundamental circle. The rotation angle

is 0 1 2 where V'l +tan '[I,d] 02 tan cl+ ),1 The shape is
2 wee =an -yj '2 d = ft i-d,
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normalized to T', where the ith component is

c i = e -Jx {el- (a. + icoj)s.

This normalization moves the "center" of the shape to the origin, scales, and rotates
the shape so that the major axis of the fundamental ellipse is along the x-axis. There
are two possible rotations that will put the major axis of the fundamental ellipse along
the x-ax is. To resolve this ambiguity, an additional 180 * rotation is applied if neces-
sary to place the maximum absolute x value in the right half plane.

Atter this normalization the Walsh points are computed. Then the starting- point
along the shape needs to be moved to some standard position. This is accomplished by
shifting the starting-point to that Walsh point having the largest positive x value.

As previously mentioned, there are some notable problems with this procedure.
First, shapes exhibiting N-fold symmetry have N possible orientations for which the
fundamental ellipse will be along the x-axis. Also, the method for choosing between
the two possible orientations of the fundamental ellipse is sensitive to contour noise. It
is also possible the there is no single maximum absolute x. The starting-point normali-
zation is also sensitive to this situation.

Examples:
Shown in Fig.2 is the original contour of a F104 aircraft generated using a com-

'puter graphics program. Also shown are the x and y projections. Also shown in Fig. 2
are the normalized Walsh points corresponding to several powers of 2. The boxes
around each Walsh point have width 2e. So, each point on the original contour will lie
inside one ot the 2c neighborhoods of at least one Walsh point. Shown in Figs. 3-6 are
the x and y projections corresponding to the Walsh dots.
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Fig. 2. Original F104 contour and Walsh points with corresponding neighborhoods
after normalization for 2N = 16, 32, 64, 128, 256.
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Fig. 3. Original contour projections (624 points).
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Fig. 5. Normalized Walsh point projections (2 N =32).
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YMULTIPLE MODEL ADAPTIVE FILTER FOR TANK FIRE CONTROL
0AND ITS MICROPROCESSOR IMPLEMENTATION

P 3-T. Yip
U.S. Army Armaments Research & Development Command

0 Fire Control & Small Caliber Weapons Systems Laboratory
Dover, NJ 07801

ABSTRACT Th study is to investigate the feasibility and
performance of an adaptive fire control filter-predictor system in
the microprocessor environment. The filter model used is our previous

_ design which includes a Kalman estimator for tank target state
estimation and an UD-factorization scheme to Propagate the state
error covariance matrix. This method insures computation stability
and enhances accuracy of the filter algorithm. Moreover the
parallel structure of filter configuration in this model is
inherently suitable for microprocessor implementation. Three Intel
06/12a single board computers are used to process the parallel
filters simultaneously. One of them is designed to access the other
two to gather critical data for adaptive prediction in real time.
The computation accuracy of the target state estimates and the
processing time are examined.

I. INTRODUCTION This study is to investigate the feasibility
of implementing and the performance of an advanced adaptive fire
control filter-predictor system in real time and in the microprocessor
environment. The filter model used is our Previous design1 which
includes a Kalman estimator for tank target state estimation and an
UD-factorization scheme2 to propagate the state error covariance
matrix. This method provides excellent computation stability and
enhances accuracy of the filter algorithm. In addition, the parallel
structure of filters in this model is inherently suitable for
microprocessor implementation.

We start our exercise with the UD-factorization of the state
error covariance matrix. The system configuration is considered
next. Then the interface of microprocesst..o is described. The
requirements of implementation are stated. Lastly, the results and
conclusions are addressed.

II. UD-FACTORIZATION OF THE STATE ERROR COVARIANCE MATRIX In
the conventional Kalman filter algorithm, the error intormation
propagates through updating the state error covariance matrix. They
are

T, -1 + Gk1GT (I)
7k/k-i Ok~k-l k-i k k-l Gk.l

'k k/k- 1 k k k/k-i kHP H+ ) 2

-P K H P
k k/k-i k k k/k-i
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where is the a posteriori state error covariance matrix, P,
the a priori state error covariance matrix, j, the state transition
matrix, H, the measurement matrix, G, the distribution matrix,
K, the Kalman gain matrix, Q, the plant noise covariance matrix,
and r, the measurement noi-se variance.

The P matrix is required to be positive semi-definite in order
that the system is stable. As we may see in Equation (3) that the
difference of two semi-definite matrices can produce a negative
definite P especially when the accumulated round-off error becomes
significant. Hence, the UD-factorization method is adopted for its
inherent stability and enhanced accuracy.

The recursive formula of the UD-algorithm for updating the
state error covariance matrix in each measurement cycle are

WDWT - #tBOTOT + GQGT (4)

- WDWT (5)

- HTUBUTH + r (6)

K - DTH/c (7)

-O - (DflTH) (yUTH) T] UT (8)

where is N by N and

N" n+Nw, W- [UIG] n by-N,

G- nbyN

1"-..U 1,2 -- --u1,n
U -n by n,

T  (hl--- hn)
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D, n by n diagonal matrix and

0, zero elements.

with b =U T H, = U U TH and initial conditions

1 ", v/a 1 , al =T+V Ib l, and
T (Il0 --- 0)

where Uji and Ki. are the ith element of the column vector Uj
and Kj r spectivaly.

Then, the elements of d, U, and K are computed recursively as
the following:

For J-2, ---,n (Equations 9 through 13)

aj aj. I + '-b (9)

lj =-lji iii
A -
d -d a_/j(10)

-b (11)L

For i-1, ---,n (Equations 12 through 13)

U i. * Uij + XjKij (12)

F2,J+ 1 - Kii +V.J Uij (13)

The Kalman gain K of this measurement cycle is given by

K = Kn+/ n
Since r is always positive, the positive de.finite condition of

D is assured by Equation (10). As cancellation type errors that may
happen in Equation (3) are avoided in Equation (10), the accuracy
of computation is enhanced.

III. SYSTEM CONFIGURATION In our previous estimator-predictor
design, thre types of target models have been incorporated. Type 1
is a constant velocity model. Type 2 is a first order Markov
acceleration model and type 3 is a second order acceleration model
with one zero and two poles. The parameters of these models have
been identified with real test data to account for various target
maneuvering levels. Noised corrupted data of range and azimuth angle
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of target are measurement inputs to the three parallel extended
Kalman filters modified with the UD-factorization scheme. The
adaptive prediction comes in when one of the filters with the
largest likelihood function is selected to provide estimates for
gun lead prediction.

Three microprocessors are used and each processes one filter.
the one with the constant velocity model is the master board which
also processes the filter selection and gun lead predictions by
virtue of its smaller load of computational burden. The communication
control and data transfer between the master board and the other
two microprecessor boards will be described in the next section.

IV. MICROPROCESSORS AND THEIR INTERFACE Three Intel 86/12a
single board computers (SBC) are used to process the parallel
filters simultaneously. Each has 32K bytes of random access memory
(RAM) and 8K bytes of electronic programmable read only memory (EPROM)
which can be extended to 32K bytes. If more memory is needed, extra
RAM and EPROM boards can be attached. The memory in own board is
accessed by the central processing unit (CPU) of the board through
the local bus. Additional memory up to one megabyte can be planned
and accessed through the system bus.

The communication between the keyboard or the microprocessor
development system and the master board is established through a
serial interface cable. Two out of the three programmable peripheral
interface input/output ports are used to take care of the
communication traffic control between the master board and the other
two boards.

The data transfer uses the multibus interface which requires
only one bus clock of 9.22 MHz for synchronized communication among
the SBC. The local CPU must reside in that part of its own memory
which has not been assigned as dual port RAM inside the megabyte
addressing plan when another CPU actually accesses the dual port
RAM area.

The 86/12a single board computer which has twelve 16-bit
registers performs floating point computations with the help of a
floating point mathematics library simulating 32-bit operation.
The test chip of 8087 coprocessor was made available for development
on August 1981. This coprocessor which can be attached to the 86/12a
computer board easily has eight 80-bit registers capable of
performing 32- and 64-bit floating point multiplication with very
high speed such as tens of microseconds.

V. IMPLEMENTATION After the proper interfacing of the
microprocessors, some real target paths of various noise statistics
are selected. The function of the entire set-up, the prediction
estimates and the processing time of the second order algorithm in
this system are investigated.
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a. A rather linear portion of a target path is used to verify
the proper functioning of the entire microprocessor set-up. A
similar program is run on an IBM 360 computer to obtain results for
comparison.

b. A segment of real target path data with an average
maneuvering noise level 1.176 meters per second and an average
speed 13 miles per hour is corrupted with random Gaussian noise of
3 meters in range measurement and 0.3 milliradians in angle
measurement. These corrupted data is sampled at 10 samples oer
second as input to the system and the prediction estimates are
compared with the results from previous study using a conventional
extended Kalman filter without modification.

c. With the same data the system performance is evaluated for
processing the data at 5 samples per second instead of 10 samples
per second.

d. The processing times for the floating point multiplication,
division and square root operation with the 86/12a CPU are comnared
to that with the 8087 numerical coprocessor.

e. The actual processing time of the second order algorithm
with a 8087 coprocessor test unit is examined. The number of
measurements processed in 10 seconds is noted.

VI. RESULTS AND CONCLUSIONS Under the implementation conditions
in the previous section, results are summarized as follows:

a. Results from IBM 360 and Intel 86/12a SBC show a 1.2 percent
or less difference in lead angle estimates and much less in impact
range estimates. The proper functioning of the multi-microprocessor
set-up is verified.

b. From previous study for the given target path in imnlementa-
tion of b and averaging over seventeen Points, ti e estimated
prediction errors in milliradians are 1.29, 1.72 and 0.91 for constant
velocity, first order acceleration and second order acceleration
filter types respectively. From the multi-microprocessors under the
same conditions, the estimated prediction errors in milliradians are
1.2, 1.49 and 0.88 for constant velocity, first order acceleration
and second order acceleration filter types resoectively.

The accuracy of the estimates from this algorithm are highly
competitive or bether than that from the conventional extended
Kalman filter algorithm.

c. With a sampling rate of 5 samples per second the estimated
prediction errors in milliradians are 1.16, 1.54 and 0.9 for constant
velocity, first order acceleration and second order acceleration filter
types respectively. The change in performance is about 3 nercent.
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d. Averaging over ten thousand iterations, the floatinz noint
operation of the command group LOAD, MUL, STORE and TAIT takes 4
milliseconds with the 86/12a CPU while the same takes 63.9
microseconds with the 3087 coDrocessor. It is a 63 times faster in
multiplication with the latter.

For the command group LOAD, DIV, STORE and WAIT, the floating
point operation takes 5.5 milliseconds with the 86/12a CPU and 85.6
microseconds with the 8087 coprocessor. It is 64 times faster in
division with the latter.

For the command group LOAD, SORT, STORE and WAIT, the 96/12a CPU
takes 40 milliseconds to process a square root procedure while the
8087 coprocessor with its micro program for SQRT takes 77.6
microseconds. It is 515 times faster with the latter.

e. With a test unit of 8087 coorocessor planted in the 86/12a
board, the second order algorithm is processed for 10 seconds.
Only 88 sets of measurements are processed. This indicates that a
12 percent improvement in speed is needed to do 10 samples Der
second real time processing. Fine tuning the program code or
changing the programming language to assembler tyne may heln
eliminate this time lag.

In all, the numerical characteristics of the UD-factorization
algorithm are impressive. It has been encouraging to know that
microprocessor technology has caught up in speed and flexibility
to process advance parallel algorithms with heavy load of comutation.
We see that great many applications of microprocessor to multinle
input, multiple output and parallel processing are forthcomin-.
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SOLUTION OF A HYPERBOLIC VOLTERRA EQUATION
BY A FINITE DIFFERENCE SCHEME

Peter Markowich and Michael Renardy 1

ABSTRACT: A model equation for viscoelastic solids is investigated. The
solutions of this equation have the feature that they remain smooth globally
in time for sufficiently small data, whereas "large" solutions may develop
shocks. This is verified numerically using a Lax-Wendroff type finite
difference scheme.

1. INTRODUCTION. Viscoelastic materials are generally modelled by
constitutive laws relating the stress to the history of the strain [3], (7],
[8]. This leads to partial integrodifferential equations of motion. In this
paper, we study the following model equation, for a one-dimensional
viscoelastic solid, which was first analyzed by Dafermos and Noehl El], [2]

(1.1) ut =* (Ux) - 0 a(t-s)*( (Ux(x,s))xds + f(x,t) .

Here *, * are smooth functions satisfying 0(0) = *(0) = 0, 0(0) > 0,

*(0) , '(0) - '(0) 0 a(s)ds > 0. The kernel a is assumed to have

the form

N s
(1.2) a(s) I I KIe , Ki, L > 0

Equation (1.1) can be regarded as a perturbation of the quasilinear wave
equation utt = (u X)x . it is well known that this equation generally does

not have a global smooth solution even if the initial data are smooth. Also,
there is an energy conservation law. On the other hand, Dafermos and Nohel
[1], [2] have shown that solutions to (1.1) on a finite x-interval (with
Dirichlet or Neumann boundary conditions) remain smooth and decay to zero as
t + *, if the initial data u(t-0), ut(t-0) and the forcing term f are
small in appropriate Sobolev norms. For large initial data, the analysis of
similar models shows [4], [6], [10] that this can not be expected and shocks
may develop. One may regard this as the result of a competition between
nonlinearity (leading to shocks) and dissipation introduced by the integral
term. For small data, dissipation wins, and for large data nonlinearity wins.

Below, we shall sketch a new proof of global existence for small data in
the case of periodic boundary conditions. More details are given in a forth-
coming publication (5]. Ideas similar to those developed here have also been
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used to show the stability of the numerical scheme, which is explained in

Section 3. We have proved convergence on finite time intervals and globally

in time in the case of small solutions [5]. In Section 4, we report

computations. They illustrate decay and global smoothness for small initial

data and the development of shocks for large data.

ACKNOWLEDGEMENT. This research was motivated by a suggestion of

Professor John A. Nohel.

2. ANALYTICAL THEORY. We consider spatially periodic (to be definite,

say, 2w-periodic) solutions to (1.1) with a given initial condition u(0,x) =

u0 (x), ut(0,x) = ul(x). In our analysis, we make essential use of the fact

that (1.1) may be transformed to a symmetric hyperbolic system. For

simplicity, let us assume + - *. The substitution v - ux, w - ut , gi

+ * X( (u (x,s)) dS leads to the system
-t 0 X x

x

N N
(2.1) (v)x - Kjg - ( X )w + f

jil 1

9i 'igi- iW + j K 1(9. + W) - f

The hyperbolic system (2.1) becomes symmetric hyperbolic when we define

,(y) - j0 V(y) dy, 0(y) - '(c- (y)) and set v - W(v). This yields a

system of the form
V - 0(')w X

(2.2) - 0() ...

Our global existence proof for small solutions consists of three steps

(for details, see E5]):
(i) Show that the trivial solution v - 0, v - 0, gi = 0 is stable in the

linearized sense. This follows from a straightforward Fourier
analysis.

(ii) Show that the linearized stability persists under small
perturbations. A problem arises here because the hyperbolic part leads

to relatively unbounded perturbations of the linearized operator.
Therefore, a more refined argument than standard perturbation theory is

needed. We can make use of the fact that the leading operator in a

symmetric hyperbolic system is skew-adjoint. With this and the

information from step 1, the linearization of (2.2) at a small

v (x,t), w0 (x,t) can, after a suitable transformation, be written intR. form

(2.3) a f (A + a + C)y
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where the operator A is dissipative, B is skew-adjoint and C has
small norm. It is immediate that A + B + C is still dissipative.

(iii) Use a contraction argument for the nonlinear problem. As a result, we
have obtained:

Theorem 2.1: If f e Hn ([0,m) x R/21Z;R) and v(0), w(O),

1(0), ... gN() e Hn(R/2wZ;R) (n > 2) have sufficiently small norms,

and f0 f(x,t)dx _ 0 for all t, then (2.2) has a solution
(vw gI .... ) e Hn([0,-) x R/21Z;R 2N+ 2 ) which assumes the

prescribed initial values.

3. THE LAX-WENDROFF SCHEME. The Lax-Wendroff scheme approximates an

equation of the form y - F(yt) by a Taylor expansion of second order:

y(t+At) - y(t) + At.;(t) + (t) (t)
2

(3.1)

y(t) + At.F(y,t) + (At)2 (D F * F + D F)
y

We apply this idea to the system resulting from (1.1) by the substitution v -

t -(t-s)
UX• w = ut, zt = K r 0 • * *(v(s)) ds. Choosing a uniform mesh, this

leads to a scheme of the form

n+1 n a+2 E2  + n n
V i + k +j1-2 a A*(v )-ftA z Li+ Af

nt+l n n N n n
- + k [44(v ) L I + f ]1-1

+ A2 [A+(##(.1 (vn + vn )law) - EK *(vn) + n + (f ft1
(3.2)

n f+1 n +k[K A*(v, ) - znI Z ]

Z~i 1~i AL1

+2 + n n -n
+ -- [A+KT '((v i + vi 1 ))A Wv)

_ (K A4,(vn )  _. n
I - z~i)] "

Here i denotes the spatial, and n the temporal index of gridpoints.

A and A are the righthanded, lefthanded and symmetric difference: a
approximations to j-. The scheme is formally of second order. In [5] we

have given a stability analysis which shows that, provided R (k - temporal
mesh size, h - spatial mesh size) is less than a certain limit, the scheme
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converges with an error 0(h2 + k21 This holds on finite time intervals as
long as the exact solution stays smooth. It also holds uniformly for
t e [0,i) for the case of small solutions discussed in Chapter 2. In order
to avoid stiffness problems for large II, it is sometimes of advantage to

replace z n in the last term of (3.2) by zti .

4. NUMERICAL RESULTS. In the following calculations we have used the
initial conditions

V(0•x}= u x(0,x) - (1-3x-x2 +x3)e-x/2/N

w(0,x) - ut(Ox) = (1-x2 )eX/2IN

the integral kernel

a(s) - 0.4e
- s + 0.2e

2 s

2 3and the function *(ux ) - *(u x ) = 2uX + Su + 25u"x The force f was put

equal to 0. Plots 1-3 show the evolution of v for N - I. It can be seen
that shocks develop very quickly. In contrast, solutions remain smooth and
decay for N - 40 (Figure 4, 5). L2N in these figures denotes the L2-norm
of v. It can be seen that the asymptotic character of the solution is that
of two diverging wave packets with decreasing amplitudes. In contrast, the
wave equation (without the integral) shows development of shocks and no decay
(Figure 6, 7). Figures 8-11 show one of the shocks (for N - 5) in
dependence of the mesh size. It can be seen that a boundary layer of
thickness 3h develops. The Lax-Wendroff scheme can be viewed as an
artificial viscosity method with a viscosity of order h (see [9]).
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0 LARGE DEFORMATIONS AND STABILITY OF AXISYaMETRIC
MOONEY MEMBRANES - FINITE ELE24ENT SOLUTIONS

AA' Johnson

US Army Natick Research and Development Laboratories (DRDNA-UE)
Natick, MA 01760

ABSTRACT. The nonlinear deformations of axisymmetric Mooney membranes are
determined using the finite element method. A one-dimensional form of the
potential energy is used. Element gradient and tangent stiffness matrices are
computed directly from the potential energy and they are expressed as a sum of
coefficients, that depend nonlinearly on the finite element interpolation
functions, times a set of matrices, that depend on the element interpolation
functions. Numerical integration is used to obtain these element matrices
which contain rational expressions of the nodal unknowns. Axisymmetric deforma-
tions of the inflated initially flat disk, the out-of-plane deformations of a
disk with a circular rigid inclusion, the inflation of a torus with both
circular and elliptical initial cross sections and the inflation and stretching
of a cylinder are all determined. The torus solutions are carried out beyond
the limit pressure yielding both stable and unstable solutions for one internal
pressure. The effects of the order of numerical integration used to compute
the gradient and tangent matrices and the effects of the order of the polynomial
elements used on the convergence of the method with respect to mesh reduction
are numerically computed using Richardson's method. ...

INTRODUCTION. The design of Army field tentage involves the use of non-
linear mechanics. The nonlinear mechanics problems associated with axisymmetric
rubber membranes are useful for testing the application of numerical algorithms
intended for use in more general nonlinear design problems. Levinsonl intro-
duced the use of the principle of stationary potential energy for determining
finite deformations of rubber membranes. The use of the stationary potential
energy method was pursued with the Ritz method by Tielking and Feng2 to deter-
mine the nonlinear deformations of axisymmetric Mooney (rubber) membranes.
Tielking and Feng's formulation determined the stationary points by finding the
extreme value of the total potential energy with respect to trial functions
which describe the configuration of the membrane instead of functions which
represent displacements due to the loading. They solved the nonlinear
equations which result from differentiating the potential energy (and are
satisfied at the stationary points) by the Newton-Raphson method. This re-
quired that they differentiate twice to obtain the tangent matrix (Hessian) of
the potential energy. Argyris, et al. 3 elaborated on finite element formula-
tions for nonlinear problems. In particular, techniques which allowed the
element tangent stiffness matrix to be determined by direct differentiation
of the element's potential energy were discussed. Fried4 ' 5 expressed gradient
and tangent element matrices for the potential energy in nonlinear problems as
a sum of terms which depend nonlinearly on the shape functions times a set of
matrices which also depend on the shape functions and demonstrated that numerical
integration could be used to approximate these gradient and tangent matrices.
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Johnson 6 applied this method to determine the nonlinear defor nat ons of
axisymmetric rubber membranes. Here, the calculations of the lement gradient
and tangent stiffness matrices for determining the nonlinear deformations of
axisymnetric Mooney membranes (as presented in reference 6) are given and the
results for the deformation of a torus are extended to include unstable con-
figurations. Solutions for several other axisymmetric membrane problems are
presented in the form of deformed body plots. The inflation of a toroidal
membrane with an initially circular cross section is determined for pressure
above what would be considered physically practical to show how this finite
element formulation can be used to determine the limit point of a nonlinear
deformation.

The calculation of the element gradient and tangent stiffness matrices
involver integration of expressions which contain the interpolation functions
rationally. Gauss-Legendre integration is attractive but not exact in this
case. To evaluate the effects of using different orders of Gauss-Legendre
integration, convergence data was obtained, using Richardson's extrapolation
to the limit, by mesh refinement for each of several orders of numerical
integration. The predicted limiting values of displacements were compared and
used to compute the accuracy obtained at a given mesh size.

THE POTENTIAL ENERGY FOR AXISYMtETRIC MOONEY MEMBRANES. The form of the
potential energy used here is the same as that given by Tielking and Feng 2 .
It is included here for completeness. An infinitesimal portion of an
axisymmetric membrane both before and after deformation is shown in Figure 1.
The undeformed and deformed membrane configurations are described as follows.
The undeformed membrane configuration is expressed as a function of the radius
(distance from the axis of symmetry) by the relationship.

s - s(r) (i)

The coordinates of a point with an initial radial position, r, are xl(r) in
the radial direction and x 2 (r) in the vertical direction after deformation.
That is,

x xi (r) i - 1, 2 (2)

The stretch ratios AI and A2 become (see Figure 1)

A'c' + X
-lr 2,r (3)

AC I + Si

and X2  A'B' ,X1  (4)

AB r

432

II I1I



The potential energy for axisymmetric Mooney membrane is

2
nl 2 f C [(I -3)+(12-3)]r(l+s) dr - W (5)

1 1 2 r

where C, x = material constants (1.0 and 0.1 here)

W = the work done by the applied forces

(rl, r2 ) = the domain in r over which the undeformed membrane is defined.

I =.A 2 +A 2 + 1 (6)
1 1 2 22

A1 X2

I . 2 2 + I + 1 (7)

2 1 2 X --
A1  A2

Then, the following form of the potential energy will be used with equations (3)

and (4) for the finite element analysis.

11 = 27 CI fr2 [(22+ 1 -3)+a( 2A2 + 1 +1 3) (8)

12 1 2

x r(l+s2 ) dr - W
r

COMPUTATION OF THE ELEMENT GRADIENT AND TANGENT MATRICES. We discretize by
the finite element method and construct mapping functions r - e (&) which take
the a'th element to the interval C (-1, 1). We then use Gauss-Legendre
numerical integration at "j" points to approximate the integration (w. - the
weight factor at point J). The potential energy for an element then iecomes

L [(9)

nI 2w C w (X2+X2 + 1 
(9)

wJ| 1 2 -3)e l 1  2

L 1 2
+ax12 +I + e

1(Al2 + + 3 ) Qj fej ej W

1 2 j
43J
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df
where f e e (10)

and QJ (1+sr ) (11)

Next, the following finite element approximations to the functions x (r) and
x (r) are made.

T T
x - M u - u M m - 1, 2 (12)
m m e e m

where M = a vector of interpolation functions
m

and u - a vector of element nodal unknowns
e

These approximations are used in equations (3) and (4) which are in turn used
in (9). The element gradient then becomes

- 27C w Q f e - l +Q(X2- (13)
e 2 1 J.- IX 4 X2 2 A4

12 1

X (M l'r a + M2, r b)

(1- 2 I )QX " H e

MT

where a - 1 r e (14)
2

Q

MTb 2, r u
b r e (15)

2
Q

T
Mu

and c 1 e (16)

2
r
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----- 9-

2 UT(M, MIT, + M MT )u (17)
e 1'r I r 2'r 2'r e

2
+ s,

r

and X2. ue 1 Ue (18)
2 2

r

Similarly, the element tangent stiffness matrix becomes

LF
K 2w C £ wQ f AM MT + A2M MT  (19)
e 1 j-I wJ ej ej 1r 1'r 2 2'r 2'r

+AMMT+ A(MMT, T

3M1M1 4 1IrM2,r 2'r 1 r

+ A5 (M MIT , +M MT)

5 1 1'r r 1
I 2w

(M T + T

6 12'r 1 T
au e aue

where a 2a 2  + + I j [ X4-
I L 6X X62 112" 2  X1

1 2 2 1 1(21)
2__+11 + 2 1

A - 2c 2[ 1 + E-1 + LF1  -.1lnFA (22)
3 126 61 21 2 4  4 1

-AlA2  A2  r ''1+ [2 A
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A .2ab + (23)A4  ['-X' x 6 (3
1

2 X1

A - ac +, 0 (24)

12

and A6 -bc[ 1 + a] (25)

Both quadratic, CO , and cubic, C 1, interpolation is used here. The detail of the
interpolation of the coordinate displacement functions x (r) and x2 (r) are given
as follows. 1

xij = xi(r) at node j (ij - 1,2)

- element coordinates, E (-1, 1)

r - global coordinates

For quadratic elements we have

HT  ( -&) , -1, , - 0) (26)
1

2

UT  (x ( xll , x X

e 1 21' 12' 22' 13' 23

and for cubic elements we have

T ( 0, 0 . ,4  0, 0) (27)
1 1 2 3 4

MT (0, 0, 0 0, 0
2 1 23 4
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T dXl dx 2 1  dx 1 2  dx 2 2 1
e dr dr dr dr

where = (2 - 3 + 3) (28)

2= A/4 (1 - & 2 (+ 0

3 - (l + 02 (2-a)

and 4 A/4 ( -) U + )2

A= 1 the length of the element in the global system.

DETERMINING STATIONARY POINTS AND STABILITY. The total potential energy
is the sum of the element potential energies. Thus, global gradient and tangent
stiffness matrices can be determined by the standard procedures of assembling
load and stiffness matrices in the finite element method. After application of
the boundary conditions, the global nodal displacement vector, gradient vector,
and tangent stiffness matrix (u, g, and K respectively) can be used to write the
following Taylor expansion of the potential energy near a stationary point.

11(u+Au) - 1(u) + AuTg + AuT K Au + 0(IlAuH ) (29)

Thus, to have the stable solutions to g - o (minimal points of the potential
energy) K must be positive definite. The matrix K must then have all positive
eigenvalues at a stable point. When a stationary point is found, its stability
is determined by evaluating the eigenvalues of K at that point. To obtain the
stationary points we assume we can start near one. Then, the Newton-Raphson
method can be used to locate the stationary point. That is, successive updates
to the global vector of nodal unknowns, u, are determined using

Un+l' un -K (3U)

OUT OF PLANE DEFORMATIONS OF A DISK. The undeformed and deformed geometry
of the circular disk are shown in Figure 2. The meridional stretch ratio, A,
and the circumferential stretch ratio, A2, are given as follows.
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X 'dxl ~2 
(31)-

| i I I

jdr Lrj

and AX Xl (32)

r

The work term, W , associated with element e is
e

W - I PRrx 2 X (33)
e 1 2

or W - W 2 d d (34)
e e 1- -

Te contribution to the element gradient and tangent stiffness expressions are

aW ,_ L fdMT TT dbl
e , i z w 2 2 u (M Ue)H + (M u_) (35)

au-T J-1 J e] e--1e
e el

e d& dE t =

32W L IM d dM M
and e M-2wP E2 + 2 (36)a u 8 T  ft l 1[ A.e

au dt dC

e e

dil+ 24 ue] (M 1 H 1

After application of boundary conditions the Newton-Raphson method was used with
the incremental pressure method to determine the configurations shown in Figure
3. By changing only the range of integration in r, the boundary conditions, and
dropping the work term the deformations of a circular disk with a rigid inclu-
sion pulled axisymetrically out of the plane can be determined. The deforma-
tions for one inclusion are shown in Figure 4.

INFLATION OF A TORUS. Using parametric coordinates n and & to measure arc
length of the undeformed ad deformed meridional curves respectively, the
meridional stretch ratio, X1, and the circumferential stretch ratio, X2, are
given as follows for the torus with a circular undeformed cross section, see
Figure 5.
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X =d& (37)

dn

and X2 Xi (38)

R + a cos(w)

If we let d(.) =fi the expressions for X2 and X2 in terms of x1 , x2, and" 1 1
dw

become

2 (x,)2 + (x2
A= 2 (39)

1 2

222

and a2 __ Xl (40)2 ( + a cos(w))2

The work, W, done by the pressure, P, during a deformation is

0 dx
W - f P dV - 4nP f xjx 2  1 dw - PV (41)

Wair dw

Dropping the constant term, integrating by parts, and using the boundary
conditions, we obtain

2T dx

W - 2wP x 2 dw (42)
W-0 " dw

The element contributions to the gradient and tangent matrices become

-e - 2vP E w 2x dx2 M + x 2 dM2  (43)

Tu I- L 1d- 1 1 ~-Jau e ., L 1 -S- I Q -S.

a T L TxFM M T2 M xand e a4np Z wdX I[M 2 + 2 + 2 MM (44)

aue a ue & dO d QI
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where aC (-1, 1)

e (Q) = +A

,,c = w at the center of the undeformed elementce

and 26 - the angular size of the element

With several modifications the inflation of a torus with an elliptical cross
section can be analyzed. Setting a = the semimajor axis length in the x,
direction and b - the semiminor axis length in the x2 direction then the
expressions for k2 and X2 become

1 2

2 '2 '2
X = (x 1 ) + (x 2 ) (45)

1 + p6 (a2- b2 ) sin2 (M cos(W

a4 b 4

2 x 2

and X 2  1 (46)
2 (R + p cos(w))2

where P 1 (47)

cos 2 (u) + sin 2( )

a2  b 2

After an additional modification to represent integration over a torus with an
elliptical cross section instead of a circular cross section, the deformations
of either a circular or an elliptical torus can be computed, see Figures 6 and
7.

INFLATION AND STRETCHING OF A CIRCULAR CYLINDER. The geometry used here
for the analysis of the inflation and stretching of a circular cylinder is shown
in Figure 8. The ends of the cylinder are attached to rigid unit radii disk
inclusions. The axial stretch is specified by prescribing the distance between
the end inclusions. The stretch ratios take the following form.

X (x 2 + Ci22 ! (48)

and 2  x_ (49)
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The work done by the forces stretching and inflating the cylinder can be
expressed as follows

.=x2 -1 r=l 2 dx
W= f p F(n)dn + fPrx 2 dr - PV

W0 r-O 1 dr

where the cylinder is stretched from n - 0 to n x 2 -, the force required to
stretch the cylinder is F(W) and VO = the internal v lume of the cylinder.
Dropping the terms which do not depend on the nodal variables we have

1 2 dx
W = PTr f X 1 2dr (51)

r=O dr

This work term is of the same general form as that given in equation (34) so
the element contributions to the gradient and tangent matrix are similar to
those of equations (35) and (36). A partial profile of the inflation of a
cylinder stretched to five times its original length is shown in Figure 9.

UNSTABLE STATIONARY POINTS (DEFORMATIONS) FOR THE CIRCULAR TORUS. The
inflation of a torus with R = 1.0 and a = 0.25 (see Figures 5 and 10) was
determined for a pressure range which included both stable and unstable con-
figurations (stationary points). The profiles of the undeformed and three
deformed configurations for a pressure of 6.0 are shown in Figure 10. Two of
the deformed configurations are stable and one is unstable. The unstable
configuration, in this case, is near the first stable solution and indicates
that a check for stability is important. Other indications of stability are
the so-called "limit points" (a point where the rate of change of a variable
with respect to a change in the loading reverses sign). Figures 11 and 12
contain plots of the inner and outer torus radii vs pressure. These calcula-
tions were carried out for two values of a (a = the material constant in the
internal energy density expression (11-3) + m(12-3)). It is interesting to
note that when a = 041, two limit points are found, out when a - 0.0, only one
was found.

COMMENTS ON ACCURACY. Two sources of error are considered here. The first
is the error due to modeling a continuous variable over an interval by the
finite element interpolation and the second is that due to the use of Gauss-
Legendre numerical integration to integrate the rational expressions in the
formulas for the element gradient and tangent matrices. If the mesh is fine
enough, then we can use Richardson's extrapolation method to estimate the
convergence rates and the accuracy of the calculations. The finite element
solution, u(h), for a given order of numerical integration and for a given
uniform element size h is assumed to be of the following form.

r r2  (
u(h) = u(O) + a1 h + O(h (52)
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where u(O) = the solution when h = 0

r 2 > r1 > 0 are positive real numbers

and a, = a constant that does not depend on h.

Using the first two terms on the right side of equation (52) and obtaining u(h)
for three different values of h (element size) the values of a, r and u(0) can
be determined. Estimates of the accuracy at a given mesh size and the rate Uf
convergence are then available.

Numerical results for convergence of the outer radius and the strain energy
(internal energy) are presented in Tables 1 and 2 for the inflation of the
circular torus shown in Figure 6 (R - 1.0, a - 0.5, and a - 0.1). Table 1
contains the results for the case of quadratic interpolation and Table 2 for
the case of cubic interpolation. The numerical predictions agree well. The
convergence graphs shown in Figures 13 and 14 suggest that the higher order
interpolation results in an order of magnitude increase in accuracy for a given
number of elements. Also, higher order numerical integration schemes do not
appear to be computationally advantageous since the accuracy is not as sensitive
to the integration scheme as it was to the element size (mesh size).
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STRUCTURAL ANALYSIS OF A MINE WITH TWO VISCOELASTIC EXPLOSIVE FILLS

Aaron D. Gupta

U Mechanical Engineer
U.S. Amy Ballistic Research Laboratory

U.S. Army Armament Research and Development Command
=Aberdeen Proving Ground, Maryland 21005

_ABSTRACT. The structural response of a Soviet TM-46 land mine with two
viscoelastic explosive fills subjected to an externally applied pressure wave
has been analyzed with the ADINA finite element code. The main charge consists
of 5.72 kg TNT while the booster charge in the fuze contains .04 kg Tetryl in
the fuze well. The finite element model of the mine uses the axisymmetric
two-dimensional mesh configuration with a rigid base support boundary condition.
Both implicit and explicit time integration schemes have been used for this
analysis. L

The viscoelastic explosive filler materials exhibit marked nonlinear
behavior. It was therefore decided that'the tension cut-off curve description
material models were the appropriate models to use. Relationships between
the volume strains and the bulk moduli were obtained from the Mie-Gruneisen
equations of state. These models include failure criteria which allow tension
cut-off planes to form in a direction normal to the principal tensile stress
whenever the strain initially exceeds 0.1% in tension. The materials for the
steel casing were modeled with bilinear stress-strain curves, von Mises yield
condition, and kinematic hardening rule. Trapped air inside the mine body
was modeled as an assembly of inviscid linear compressible fluid elements.

The finite element model was initially verified for mode shapes at a few
low order eigenfrequencies and a failure criterion for the casinq was incorpo-
rated based on a comparison of the value of the three-dimensional second invari-
ant of plastic strain with that of the one-dimersional value obtained from the
tensile tests. Solution of the problem in terms of stresses and displacements
out to .75 ms of real time indicates high stress concentration and large dis-
placements of the top cover plate in the stepped region and minimal response of
the interior structure until the cover plate is in contact with the intermediate
partition of the mine body.

1. INTRODUCTION. This paper describes the response of the Soviet TM-46
Antitank mine with a unique double walled construction of the top pressure plate
designed to resist a transient blast load. The rationale for this analysis is
the need to develop a remote, expeditious means of clearing a path through an
enemy mine field. A method of imparting a relatively large transient pressure
and impulse to the surface of the earth by means of explosives is under development.
The current study is a part of a general investigation to determine the extent
of structural damage sustained by the mine body from a given level of blast wave
amplitude and shape. The principal kill mechanism is to be a serious distortion
or rupture of the mine casing rather than fuze initiation or removal of pressure
plate since the damage mechanisms could be easily changed from a particular type
of mine to another and a surekill could not be ensured based on a particular mode
of actuation.
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The mine investigated represents a typical Soviet antitank mine, which
consists basically of a round thin metal body filled with an explosive.
The unique feature of this mine is a double walled construction of the top
wall resulting from joining of the top pressure plate with the intermediate
wall along the circular edge through a crimped joint which tends to increase
the blast resistance behavior of the mine. The other distinctive feature
is the fuze mechanism. However a variety of radically different fuzes,
different both in mechanical designs and method of activation could be substi-
tuted for the currently used ball-spring mechanism. Therefore the numerical
model in the present study does not include a model of the fuze.

The paper has four major areas as follows: (a) problem definition, (b)
determination of material properties and selection of failure criteria of the
casing as well as numerical characterization of the viscoelastic explosive
fills, (c) finite element model description and calculations, and (d) dynamic
response orediction of the structural assembly.

2. PROBLEM DEFINITION.

A. Antitank Mine Description. The TM-46 land mine has a cylindrical
steel body with a primary fuze well in the center of the top and one at the
bottom, presumably for antilift or booby trapping purposes. In addition, it
has a secondary fuze well in the sidewall underneath the carrying handle. A
sectional drawing of the mine is shown in Figure 1. The mine has a nominal
diameter of 29.7 cm, height of 7.3 cm and weighs 8.7 kg with a main charge
of 5.7 1,9 TNT.

The mine body is made of three pieces of sheet steel which are joined
at the upper periphery by a 3600 crimp. The top cover of the mine body is
only 0.635 mm thick and has three steps. This cover connects to a central
circular plate formed by spot-welding of a thick plate to the thin cover section.
The intermediate wall is formed from 0.94 mm thick steel sheet to which a
hollow cylindrical piece 0.56 mm thick is attached to form the centrally located
top fuze well. The fuze well contains a 40 g tetryl booster charge for fuze
activation.

The lower part of the mine body is formed by a deep drawing operation
which results in very inhomogenous material properties. The central cavity in
the main body of the mine is filled with a charge of 5.7 kg TNT explosive. The
cavity between the top and intermediate walls is unfilled. However compression
of air in this region can contribute to alteration of the response behavior of
the mine and subsequent uncrimping of the joint.

The normal method of activation of the fuze is by means-of force
applied to the pressure cap depressing the fuze and releasing the striker to
strike the booster charge in the fuze well. This activates the tetryl booster
which in turn detonates the primary TNT charge. The secondary fuze well on
the TM-46 mine gives it anti-disturbance capability.
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B. Guidelines for the Numerical Model. In keeping with the objective
of identifying a general failure mechanism independent of some specific design
feature, all fuzes and springs were omitted from the finite element model of
the mine. This was done in accordance with the previously stated guideline of
not identifying failure of the fuze components. The model considered for this
study does not include secondary fuzes and filling holes. However the secondary
tetryl booster charge is included to facilitate assessment of the influence of
trapped air in the unfilled space below the top wall on structural response of
the mine.

The auxillary fuze wells were not considered in the current investi-
gation since they increase susceptibility of the mine to damage due to stress
concentration near the junction between the body and the fuze. Thus, the
simplified model is conservative in terms of blast load requirements for mine
deactivation. Also, inclusion of these unsymmetrically loaded structures would
require the use of a three-dimensional (3-D) finite element model resulting in
significant increase in computing tim6 and costs. The dimples at the base of
the mine were eliminated for the same reasons. Because of these simplifications
the 2-D axisymmetric model was cost-effective and conservative for dynamic
response evaluation.

C. Base Support and Surface Loading. During field emplacement, the
mines may be placed on the surface and covered with grass or other materials
for concealment. In other cases, the mine may be shallow buried. In both
cases, the mine will experience transient pressure loading on the top surface
due to detonation of a countermine explosive in the vicinity. It is expected
that typical field boundary support conditions would be bracketed by two extreme
situations. In one case, the mine could.be simulated as being buried in soil
up to its top surface while the base is supported on nonlinear springs as
described in Reference 1. The other support condition allows the mine to be
supported on a rigid roller base which closely models the experimental conditions
described in Reference 2. In the current study only the second support condition
was simulated in the numerical model but inclusion of the soil medium implicitly
through nonlinear spring node-tie boundary elements or explicitly through dynamic
property characterization of the soil could be made without significant change
in the basic model. A roller support condition was used allowing lateral, but
no vertical, motion. In this rigid support condition, the input shock load is
applied to the top and sides of the mine.

For structural loading the pressure pulse used in this paper
simulated peak pressure and impulse measured from experiments conducted with
mine clearance types of explosives in Reference 2. The peak pressure was
13.8 MPa and the impulse delivered was 6.5 kPa-sec. A decaying exponential
function was fitted to these parameters resulting in the following equation

P(t) = 13.766 2 1 7  (1)

A curve of this function varying in time is shown in Figure 2.

454



14 2000

12

10 1500

-e 1000w

-
4

500

2

0 0
0.0 0.4 0.8 1.2 1.6 2.0

TIME (is)

Figure 2. Shock Loading in Antitank Mines

3. MATERIAL PROPERTIES CHARACTERIZATION AND FAILURE CRITERIA. Material
properties were required for the steel jackets, the explosive filler materials
and the trapped air before numerical simulation could be carried out. Mechanical
properties were measured for the steel jackets by employing uniaxial tensile
tests. The high pressure equation of state data for explosives were obtained
from available publications. Failure criteria used for the steel jackets and the
filler materials were similar to the formulations in Reference 3.

A. Steel Casing. The TM-46 jacket is made of a low carbon soft magnetic
steel equivalent to mild steel. The lower part of the casing was deep drawn,
but it retained an equiaxed grain microstructure with isotropic properties. Two
tensile speciments were cut from each of the significant surfaces of the mine
body. Locations of these specimens are shown in Figure 3(a). The specimens
were machined with a large radius on the test section as shown in Figure 3(b).
An extensometer and a biaxial strain gage were attached at the location of the
minimum width and the specimens were tested in an Instron Testing Machine at a
relatively slow rate of strain. Typical quasi-static stress-strain curves for
the Soviet mine body are shown in Figure 4. Evidence of work hardening and
residual stress was significant in the casing material due to the forming
operation and operating field conditions.
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Bilinear approximations to the stress-strain curves obtained by averaging
the data for the individual specimens are shown superimposed in Figure 4.
The ADINA (4, 5) finite element code used in this analysis has a bilinear,
elastic-plastic, von Mises yield condition, kinematic hardening, axisym-
metric 2-0 element for the steel jacket.

The criterion selected to predict failure of the steel casing
material was described in Reference 3 as the value of the second invariant

pof plastic deviatoric strain at failure, 12f E , defined as

P P P
1 2f(E ) = E C (2)

where .Pi are the plastic component of strains at failure. In the uniaxial

tension test where the load is applied in the axial Z-direction we have,

I2(£D = 3/4 c(P)2 (3)

B. Characterization of Explosive Fills. There are two types of
explosive filler materials employed in the TM-46 mine, i.e., TNT as the main
charge and tetryl as the fuzewell booster charge.

After surveying the available material properties of explosives and
the varIJus 2-0 axisymmetric materials models in the ADINA code, the curve
description material model (Section XII, pp 17-22, Reference 4) was found
to be the appropriate model to use. This model requires tables of loading and
unloading bulk moduli and shear moduli versus volumetric strain.

A relationship between the volumetric strain and the bulk modulus
obtained from the Mie-Gruneisen equation of state (Reference 1, 6) for
shock propagation in solids is given as

P(P,E) = AP + BP2 + Cp 3 + rE/V (4)

where A, B, and C are material constants determined experimentally from
Hugoniot-pressure volume states obtained in shock transitions. The above
equation characterizes the P, V, and E state variables which are attainable
by the solid. In this case the solid is either TNT or tetryl explosive.

The adiabatic loading bulk modulus is defined by

K £ = _()(5)

Assuming that the state of the system is defined by the variables s, E, and
V, we have corresponding to the expressions P = P(V,E) and E E(V,s),
res pec ti vely,
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dP = (2)E dV + (2L) dE (6)dP= E E V

dE = /DE dV +taE ds (7)\)V s  \ 's )v

Substituting dE from (7) into (6), we find

dP E V / DE\ V aE\- ds (8)

[(LDVIE + E) V s dVIS + E)V-s

But from P = P(Vs) we know that

dP = 2 dV + ds (9)

Comparing Equations (8) and (9), we have the following expression,

3 = (P+ a (10)
aV = 0VE aE )vk(V )s

Defining the pressure by the relation

P : l l

and substituting this in Equation (9), we have

lip) = (a_ )p P E 3lP\(TP ( )E v- )1

Performing the required differentiation of (4). and using,

a E \a VE (1

we obtain, after some manipulation

KX = Pr + rE/V + (1 + p)(A + 2Bu + 3Cp 2) (14)

Using P = P(EV) "'om (4) the relationship between bulk modulus and
volumetric strain is given as

2 3
Ki = r(r + 1) Ep + A + A' + B'1

2 + C'p (15)

*We define volumetric strain ratio, p = (Vo V)/V and Vo = lIp/.

459



where

A' = A(r + 1) + 2B

B' = B(r + 2) + 3C

C' = C(r + 3)

In order tu transform Equation (15) to a form K = K(V) the assumptions of
unidimensional shock equations and conservation laws of mass, momentum and
energy are invoked. The three conservation equations in a frame moving at
the shock velocity, Us , are:

pV= P0 V0  (16)

P + pV2  P0 + PoV02  (17)

pVE + (pV)V2 + PV = P0 V0 E0 + (PoVo)V0 2 + P0V0  (18)

where V and U are particles velocities, E is the specific internal energy
and the quantities with zero subscript are undisturbed values while the
quantities without subscripts are applicable behind the shock. In a
stationary frame assuming Uo = 0, the following relations between frames

of references could be used

V = U - Us  and V0 -U s  (19)

Substituting above in (16), (17) and (18) the corresponding stationary

conservation equations reduce to

PoUs = p(Us - U) (20)

P - Po 
= POUsU (21)

E E=(P+ P 0)(P - PO (P + P0)(V - V) (22)
E-E 2pp

Assuming PO = E= 0, and substituting E from above into (4), we obtain:

p (A, + B 2 + Cp2)/(l - pr/2) (23)

Similarly, substituting E from (22) into (15):

KZ pPr(r + I)(Vo - V)/2 + A + A' + B'p.2 + C'j3  (24)
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Finally, substituting P from (23) into (24) thF. ,inal form is obtained as

- r(r + l)(Ap2 + Bp3 + CP4 ) + A + A '
2 - ur A A +B 2 +C' 3  (25)

where

KZ = the loading bulk modulus

r = the Gruneisen coefficient

A' = A(r + 1) + 2B

B' = B(r + 2) + 3C

C' = C(r + 3)

= 6V1 - CV)

= (Vo - V)/V 0 , volume strain taken positive in compression

V3 = I/po = specific volume at normal conditions.

For the particular case when e. = 0 which implies P = 0 and V = Vo it can

be easily seen from Equation (25) that K = A. Also in the Gruneisen

equation of state, at EV = 0, we take both the pressure and internal energy

to be zero. The values for the material constants of the explosives used
are shown in Table 1.

TABLE 1. MATERIAL CONSTANTS FOR EXPLOSIVES AND SOIL

Type PO r A B C V

(g/cm3 ) (Gpa) (Gpa) (Gpa)

TNT 1.614 .737 10.367 9.101 138.33 .3

TETRYL 1.70 1.6 10.498 17.8 20.6 .3

WET TUFF 2.0 1.5 21.77 32.5 18.33 -

Since data to relate the unloading bulk modulus to the volumetric strain
were unavailable, the bulk moduli for unloadinq were assumed to be identical
to the moduli for loading for all explosives. The loading shear modulus, G.,

was obtained from the loading bulk modulus, K{, by use of the relationship,

3Kk(l - 2v) (26)

2(l + v)

*Here we define specific volume, V = i/p or pV 1.
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Figures 5, 6 show the dependence of bulk and shear moduli of the two explosives
represented by Equations (25) and (26) on volumetric strain. Table 2 gives the
values of the two moduli as they were used in the ADINA program. ADINA uses
linear interpolation between discrete points.

The tensile volumetric strain at failure of -0.1 per cent as given in
Reference 7 was used in calculations for all explosives in this investigation.
The method of application of this failure criterion in the ADINA code is
through the technique of superimposing on the load-induced strains, a localized
gravitational pressure sufficient to cause a hydrostatic compression equal in
magnitude to the tensile failure. When the total strain becomes tensile or
negative (as per convention used in the material model in the code), a tension
cut-off plane is assumed to form normal to the principal strain direction. The
normal and shear stiffnesses across this plane are reduced by a factor determined
by an input value. One or two additional planes orthogonal to existing cut-off
plane (s) are allowed to form if the strain criterion is met. The planes be-
come inactive if compression again develops in the normal direction to the
planes.

The pseudo-hydrostatic prestrain is applied by positioning the vertical
Z-coordinate at an appropriate negative value. The hydrostatic pressure
applied at an element integration point is given for an element, j, by

N

Pj e - g .hzjij (27)

where

g is the acceleration'due to gravity.

Pe is the density of the overburden.

h hij is the shape function for node i of element j.

Z. is the vertical coordinate for node i in element j.

N is the total number of nodes in the element.

The depth of the overburden in terms of the system vertical coordinate
position can be obtained from the equation,

f

Z ave v (28)
ave

where
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TABLE 2. ADINA INPUT VALUES FOR BULK AND
SHEAR MODULI FOR FILLER MATERIALS

TNT EXPLOSIVE

Point No. EV KK U G

() (GPa) (GPa) (GPa)

1 0 21.72 21.72 10.62

2 1.0 23.03 23.03 11.24

3 3.0 25.65 25.65 12.55

4 5.0 28.68 28.68 14.01

5 9.0 35.85 35.85 17.51

6 11.0 40.20 40.20 19.65

TETRYL FILLER

1 0 10.5 10.5 4.03

2 1.0 11.15 11.15 4.27

3 3.0 12.59 12.59 4.83

4 5.0 14.24 14.24 5.46

5 8.0 17.2 17,2 6.60

6 10.0 19.56 19.56 7.50

WET TUFF

1 0 10.37 10.37 4.79

2 1.0 10.78 10.78 4.98

3 3.0 11.93 11.93 5.505

4 6.0 14.62 14.62 6.75

5 8.0 17.24 17.24 7.96

6 10.0 20.64 20.64 9.51
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Ko 0 is the initial bulk loading modulus,

f is the volumetric failure strain, negative in tension, and

Z is the negative of the distance from the ground surface to the
mid-plane of the mine.

C. Soil Simulation. For the structural response calculations of
the shallow buried mine, only the top of the mine was exposed to blast pressure
while the remainder was assumed to be embedded in soil. In the M-15 mine in
Reference 1 an implicit modeling technique was employed whereby nodal tie
elements were used to model the base support.

However for the TM-46 mine it is proposed to use an explicit modeling
technique whereby initially two compressible layers of soil surrounding the
mine body could be included through finite element discretization. Although
separation of the mine from the soil medium subsequent to the initial response
and sliding phenomenon could not be accounted for, the technique would be a
considerable improvement over previous methods due to realistic simulation
of the response which includes blast attenuation effects. No simulation of
the soil was necessary for the rigid support calculations.

Due to the large variety of soils in which mines would be emplaced, it
is possible only to select a soil simulation model which would be represen-
tative of some subclass of soils. Thus, a typical shock Hugoniot curve for
wet tuff from Reference 8, 9 was selected to define the soil element properties.
The data were reduced to a high pressure equation of state and subsequently to
a dependent formulation of the bulk moduli on volumetric strain in order to be
compatible with the requirements for the tension cut-off curve description
model in the ADINA code. For a fully buried mine the soil modeling could be
extended in the region above the top of the mine casing and only the top layer
of the soil medium could be pressurized by the blast load. The detailed ADINA
input values for the soil are shown in Table 2.

D. Simulation of Void in TM-46 Mine. The TM-46 mine has a cavity
between the top pressure plate and the middle plate covering the primary
charge. This cavity is filled with air which transfers some load to the
middle plate as the volume of the cavity is decreased sufficiently. Further
uncrimping of the crimped joint connecting the side, top and intermediate
walls, due to air compression and angular deflection of the casing near the
joint could conceivably occur resulting in loss of some primary explosive
charge and consequent deactivation of the mine. Although it is difficult to
predict uncrimping using the finite element method, the code could be used
profitably to yield moments generated and angular deflection of the casing
at critical sections. A separate analysis based on classical theory could
then be applied to predict occurrence of uncrimping.

The airgap inside the mine cavity was represented in the finite element
model as a set of 2-D axisymmetric fluid elements composed of an inviscid
linear compressible material. A constant bulk modulus was used in lieu of a
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pressure dependent bulk modulus due to a lack of available data for air.
However, the primary difficulty with this model was that there was nothing
in the model to prevent the upper plate from penetrating the middle plate
as the deformation progressed.

Since the air was judged to apply only a minimal restraint on the motion
of the upper plate and due to the need to prevent the two plates passing
through one another, a different model has been adopted to simulate contact
and avoid interpenetration.

E. Simulation of Contact in TM-46 Mine. Due to lack of contact
elements in the code along the interface between the top and intermediate
plates substantial interpenetration occurs without any transfer of loading.
As a result a major part of deformation is confined to the upper plate,
particularly in the stair-cased region, which is clearly unrealistic.

Pending modification of the code to include contact capability, other
alternatives were considered to overcome the problem without significantly
altering the response behavior in an unrealistic manner. A few alternatives
were eliminated due, either to a lack of initial stress input capability, or
inability to vary the contact element stiffness as a step function with axial
compression at or near the time of contact to prevent overflow at the interface.
The model finally selected consists of fictitious axial truss elements connecting
the two circular plates. The material model for the trusses is nonlinear and
develops only a small force up until the axial strain in trusses approaches -1.
At this etrain, a large stiffness is specified to simulate contact between the
two plates. Constraints are applied to the upper end of the trusses to insure
that its radial coordinate is the same as the radial coordinate at the lower
end. Also, the axial coordinate of upper end is constrained to translate with
the upper plate. These constraints are necessary to prevent element rotation.
The model allows movement only in the axial direction and relaxation upon
initial contact but it excludes sliding surface capability which could conceiv-
ably be introduced through transverse or radial trusses but would make the
model unnecessarily complicated. However, for initial simulation only areas
with high probability of contact have been considered for contact simulation.

4. FINITE ELEMENT MODEL DESCRIPTION AND CALCULATIONS.

A. Mesh Generation. The finite element mesh for the mine was
generated with the aid of the GEN3D mesh generator program. The mine
was modeled as an assembly of axiymmetric 2-D structures using the ADINA
finite element code. A six node QUAD element with quadratic displacement
interpolation functions in the direction parallel to the surface was used
for the steel casing. This type of element models the bending of the thin
metal casing better than a four node QUAD. The explosive components were
modeled with four-node QUAD elements except where they interfaced the steel
jacket, in which case a mid-side node was included on the interface edge.
2 x 2 Gaussian integration points were used at each element for computational
purpose. A total of 304 nodes and 157 elements were used to represent the
axisymmetric model.
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In ADINA, each material having a distinct material formulation must
be modeled as a separate element group. In general four major groups of
elements were represented: (1) nonlinear 2-D elements for the steel case,
(2) nonlinear curve description 2-D elements for the primary charge,
(3) nonlinear 2-D elements for the fuzewell booster charge, and (4) non-
linear truss elements. For the steel case, four material subtypes were used
to model the steel properties in different regions of the inhomogeneous mine
body. The material model for the casing was a bilinear, von Mises yield
condition, kinematic hardening, 2-D axisymmetric element model.

B. Time Step Solution. In ADINA, one has the choice of marching
the dynamic solution forward in time via explicit or implicit finite-difference
techniques. The implicit schemes are unconditionally stable and can tolerate
larger time step size resulting in reduction of computational times. However,
equilibrium iteration and stiffness reformation at regular intervals are
necessary to obtain meaningful results. In general, it is difficult to make
absolute statements as to which is best for a given application. For highly
transient shock loads such as shown in Figure 2, it has been our experience
that the explicit method gives the higher quality solution for a given
amount of central processor computer time. The subject problem was run for a
relatively large number of cycles using both explicit and implicit (with
equilibrium iterations included) time integration solutions. After a selected
amount of problem solution time, the results were compared for solution
quality. The explicit solution appeared to have a smoother variation in both
displacements and stresses. For this reason, we selected the explicit
solution method.

The time step used for the calculations Was determined from the Courant
stability condition

Atcrit AL minAt -== -
n n VY-8 -7

where

Atcrit is the minimum Courant stability step size.

ALmin is the distance between the two closest nodes in the system.

Eymax  is the Young's modulus for the stiffest material.

P is the density of the material,

and n is the number of time steps which we wish to represent the

shock wave in passing through the distance AL.

The value of Atcrit was approximately 200 nanoseconds and a value of n of

four was used, so that the time step for the central difference explicit time
integration method was 50 nanoseconds.
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C. TM-46 Mine Calculations. The ADINA calculations for the TM-46
mine are in progress. However, some of the salient features of the model
have been developed from progress made in studies of the mine thus far. A
drawing of the current mesh configuration is shown in Figure 7.

r--- o TRUSS
ELEMENTS

/ -_____- I
Figure 7. Finite Element Mesh for the TM-46 Mine

Since experimental data indicated significantly- varying material
properties in different regions of the outer steel jacket of the TM-46 mine
several different sets of materials properties were used to model the various
steel components of the mine.

At the outset two particular difficulties were expected to be encountered
in modeling the TM-46 mine. First, the difference in stiffness between the
steel plates and the air filled region leads to numerical problems. The
collapse of the air filled region leads to the impact of the upper plate on
the middle plate. This phenomenon needs to be modeled rather carefully.
Secondly, the thin stepped region of the top cover shown in the upper right
part of Figure 7 leads to a very inefficient mechanism for load transfer from
the top cover to the main mine body. On the other hand, failure of the top
cover may not indicate deactivation of the mine and a viable failure mechanism
must inevitably involve a failure of the main mine body.
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Since the ADINA code does not currently have a contact element to sense
when the top cover plate impacts the intermediate plate, an approach described
in Section 3E involving nonlinear truss elements has been used to approximate
the interaction of the two plates.

Eigenfrequencies and mode shapes were also obtained for the TM-46 mine
in order to ascertain if the model has been formulated correctly and also

as an aid in estimating an appropriate time step for the explicit integration
scheme. The eigenfrequencies and associated periods for the lower modes are
given in Table 3.

TABLE 3. EIGENFREQUENCIES AND PERIODS FOR THE TM-46 MINE

Frequency Period

(cps) (sec)

3041 3.288 - 10-4

10466 9.555 x 10-

17068 5.859 x 10-1

31071 3.218 x 10-

All calculations described herein used the total Lagrangian formulation
with a lumped mass matrix with the exception of the nodal tie and truss elements.
The foriuulations used for these were material nonlinearity-only and updated
Lagrangian analysis procedure, respectively.

5. DYNAMIC RESPONSE PREDICTIONS. Several modifications to the ADINA
program were made to assist us in interpreting the response predictions. These
are described fully in Reference 1. Due to the very large amount of data
available from the ADINA results, search routines were incorporated to identify
the extreme (maximum/minimum) stresses and strains in the steel components.
Additionally for stresses in the plastic regime a quadratic correction was
applied to bring the stress tensor back to the von Mises yield surface and
allow calculations to proceed without premature interruptions. The details of
these modifications are also described in Reference 10.

From the complex structural construction of the mine, particularly near
the stair-cased region in the top plate which appeared to be susceptible to
blast induced damage and failure, it was decided to model this region very
accurately using shadowgraph measurements. The elements and nodes in the top
plate were configured to line up in the axial direction with those in the
intermediate plate to facilitate inclusion of contact elements and minimize
element rotation.

The initial, calculations for the mine on a rigid base support were run
without the contact elements to approximately 4000 cycles corresponding to an
elapsed time of 0.2 milliseconds. The purpose of the initial runs were to
determine the regions and the time of initial contact between the two platas.
The results indicated occurrence of initial contact at .06 milliseconds near
the crimped region of the mine body and the stair cased region of the top cover.
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Failures were predicted in several elements in the stepped regions
accompanied by considerable plastic flow. Stresses were significantly high
particularly near sharp corners due to acute stress concentration effects.
A major part of the response was evident in the top plate while the rest of
the mine body did not exhibit any appreciable deformation. The deformation
of the mine confined mainly in the area of the top cover plate may not be
very realistic since the mine supported on a rigid roller base has unrestrained
sidewalls where appreciable deformation is expected but unrealized due to
inefficient load transfer mechanism between the top and intermediate walls. One
of the chief difficulties encountered has been in trying to provide the appro-
priate model for the interaction of the top cover plate on the middle plate. We
have used the improvisation of nonlinear truss elements (see Figure 7) to
simulate the impact of these two components. Since a sudden stiffening of the
trusses near the time of contact generated spurious transients and was in-
sufficient to arrest penetration of the intermediate plate due to inertia
effects, earlier stiffening of the trusses in a gradual manner initially and
at an accelerated rate subsequently as shown in Figure 8 was resorted to. The
trusses developed significantly high stresses and internal forces in the region
where contact first occurred. Subsequently upon impact the separation of plates
caused the stresses in the affected trusses to be released while the next set
of trusses in the neighboring region approached impact conditions and developed
high stresses which were then released as plates separated and the traveling
wave propagated radially inward until the initial contact process was completed.
Although the response of the trusses appeared to be realistic, some overflow
occurred in the corner region and further stiffening was deemed to be necessary
to prevent interpenetration and obtain meaningful results.

A typical response of the system at an early time is shown in Figure 9.
In this figure the dotted lines represent the undeformed or original configu-
ration before imposition of the blast load. The vertical lines between the
top cover plate and the middle plate represent the nonlinear truss elements.
Currently, the calculation has not proceeded to the point where any failure
of the main mine body can occur. However, failure of some casing elements in
the stepped region has been observed at several time periods beginning at
.02 ms and continuing beyond .1 ms when formation of a zone of rupture was
indicated in the top cover. However, the main mine body did not show any
evidence of failure due to the inefficient load transfer mechanism between
the top and intermediate plates. The model of this mine is still evolving
and is undergoing modifications to improve accuracy and reliability of
prediction.

6. CONCLUSIONS. The soviet TM-46 mine because of its complex stair-
cased, double-walled construction was somewhat difficult to model accurately,
to analyse and to deactivate. Failure of a particular region of the mine
casing itself might not be sufficient to indicate overall failure of the mine.
A conservative approach was therefore taken to model the mine by eliminating
nonessential details and by requiring defeat of the main mine body through
case rupture.

The explicit time integration method appeared to be advantageous for the
tshock loaded mines due to smoothness of stresses and strains as a function of

time. However, second order corrections were necessary to assure that the stress
state remained on the yield surface during plastic flow.

471

--- - - I II-



u.J

oZ

(!sd) SSgS1S mVIXV
0 0o o

o 0

0<0

4-)

I4 (A<
I I1

I Li

I .1
~0

472



u

~0 4J

-
o

'4-m

+ 60

+ tL
+. +

LL.

+4

473

IT



The parts of the outer steel jacket of the TM-46 mine which are work
hardened in the deep drawing metal forming operation have significantly vary-
ing materials properties. These variations in stress-strain relations must
be measured and modeled carefully since they directly affect mine failure
under blast loads.

The contact problem arising from interpenetration of plates results in
inefficient load transfer mechanism between the cover and the intermediate
plate. Truss contact elements may be used profitably to overcome this short-
coming provided nodal constraints are used to avoid truss rotations.

Linear fluid elements can be used successfully to represent interaction
of air in voids with structural response. However, in TM-46 mine it's effect
on frequencies and mode shapes is very minimal.

The initial deformation of the TM-46 mine was limited to the response of
the top cover plate. The finite element modelinq with the ADINA proqram has
presented some difficulty in describing accurately the impact of the top plate
on the intermediate plate which contains the primary TNT charqe. From past
experience main body failure is expected to occur at later times near the
corners of the fuzewell due to a change of thickness and a sharp radius
resulting in significantly high stress concentration and case rupture. This
study is still in progress.
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ABSTRACT. The formation of singularities in smooth solutions of the
model Cauchy problem

ut + (u) x+ a'*$(u) = 0, x e R, t e (0,-)
(*)

u(x,0) = u ox)

is stulied. In (*) *, R + R are given smooth constitutive functions,
a : R + R is a given memory kernel, subscripts denote partial
derivatives, = d/dt and * denotes the convolution on (0,t]. Under
physically reasonable assumptions concerning the functions #,* and a it is
shown that a smooth solution u develops a singularity in finite time,
whenever the smooth data u. become "sufficiently large" in a precise sense3 .

I. INTRODUCTION. In this paperw* study the formation of singularities
for Ye- initial value problem.

ut + ¢(u)x + a'*$(u)x = 0

(1.1)

u(x,0) = uo(x), x e (R), t e [0,-)

where *, R + R are given smooth constitutive functions, a : R + R n a
given kernel, subscripts denote partial derivative, = d/dt, and where *

denotes the usual convolution operator

t

(f*g)(t) f f(t - r)g(r)d-r
0

The motivation for studying equation (1.1) is provided by the more complex
problem of the motion of a one-dimensional homogeneous viscoelastic body

*i governed by the equation

Partially supported by the Mathematics Research Centee-.
1,2Sponsored by the United States Army under Contract N . DAAG29-80-C-0041,

3See the note tabled SIG4IFICANCE AND EXPLANATION diecly following h1 Dt article.
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utt o =0, (1.2)

together with appropriate initial and homogeneous boundary conditions; in
(1.2) the stress o is related to the strain ux  by the constitutive
relation

t
o(u ) = (u ) + f a'(t - r)i(u x(xt))dT (1.3)

x 0x

Under appropriate physical assumptions concerning *,* and a, the "memory"
term in (1.3) generally induces a weak dissipation mechanism into the
structure of the solutions of (1.2). It has been shown (cf. Dafermos and
Nohel (1]) that under proper assumptions on a,o,* and on the initial data
u and ul the initial-boundary value problem (1.2) has a unique global
C solution if the Initial data are sufficiently "small" in an appropriate
sense. A similar result is shown to hold for (1.1) (cf. Nohel [2]). These
two results are of special interest since when a'(t) B 0, (1.1) reduces to
the Burgers equation, while (1.2), (1.3) reduce to the quasilinear wave
equation u = 0(u )., and it is well known (cf. Lax (3]) that under proper
convexity assumptions on 0 and on the initial data there are smooth
solutions of (1.1) and (1.2) which develop a singularity in finite time, no
matter how smooth and small one chooses the initial data. Thus, a'(t) Z 0
induces a dissipation mechanism which prohibits the breaking of waves when the
initial amplitude of these waves is small.

This paper considers the natural question of how large one must choose
the initial data in order that the shock forming structure of (1.1) overcomes
this dissipation. Analytically, equation (1.1) has a simpler structure than
(1.2) due to the fact that (1.1) has only one family of "genuinely nonlinear"
characteristics due to the convolution term. We are then able to study the
variation of the solution of (1.1) along the characteristics with the aid of
Riemann invariants. A similar approach (under active study) appears promising
for the more complicated higher order problem (1.2); this equation has three
families of characteristics and thus, in general, does not have Riemann
invariants. With the introduction of the generalized Memann invariants (cf.
John [4]) there is reason to expect that much of the analysis outlined in this
paper will be applicable to (1.2). Some experimental evidence for the
breakdown of smooth solutions of model equations 9,qverning viscoelastic
materials can be found in the work of Tordella [5]. In addition some results
in the loss of regularity of solutions in the equations for viscoelastic
fluids for sufficiently large data have been obtained by Slemrod (6] and for
dissipative hyperbolic problems by Hattori (71; these are special cases of
(1.2), (1.3) when * S f. Their methods are different from ours, and in
particular, do not appear capable of generalization to the more natural
situation in which 4 .

II. NOTATIONS AND ASSUMPTIONS. We begin by transforming (1.1) to an
equivalent system by introducing the dependent variable z by

t
z(xt) - f a'(t - -)4(u(x,r))dT . (2.1)

0
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Equation (1.1) then takes the form

ut + (U) x + z x 0

(2.2)

z t = a'(0) (u) + a"**,

together with the initial data u(x,0) = u x), z(x,0) - 0. In matrix T
notation (2.2) can be written as Ut + A(U)Ux + B(Ut) = 0 where U = [u,z]

and

A(U) 0(u 00 B(U,t) = -a'1(0)u)l-a"* "

Since AMU) is a 2 x 2 matrix having distinct eigenvalues +'(u) and 0
if *'(o) * 0, it is well-known (cf. Lax [8] that (2.2) has a pair of
linearly independent Riemann invariants r(u,z) and s(uz). By definition

r Vr = 0

(2.3)

.Vs=O

where r and r are the right eigenvectors of A(U). A simple calculation
--211

shows that r [ ) ] and[ Equations (2.3) then yield

r(u,z) - z + (u)
(2.4)

s(u,z) - z

3(r s)
Moreover, (,) = ,(u) # 0' if 0.(') O.•3(u,z)

Let x(t,) denote the characteristic curve through associated wif
(1.1) and defined by the initial value problem

dx
dt *'(u(x,t)) x(O,&) - • (2.5)

Proceeding formally, the derivative of r along this characteristic is

dr
- rt + #(u)r x - zt + *'(u)u t + #'(u)[z x + *'(u)u x ]

M Z t + '(u)[-'(u)ux - zx l + *'(u)tz x + *'(u)ux ]

zt M st

Thus, we may replace (2.2) by the equivalent system
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dr

(2.6)

s t =a'(0)4(u) + a"**(u)

together with the initial data r(u,z)(x,O) = *(u0 (x)), s(u,z)(x,0) E 0.

The basic constitutive assumption concerning * is

Assumption 2.1: * e C (-, ) and k ) 4'(-) > C I > 0, >"(.) ) 8 > 0.

Since by this assumption * is invertible, (2.4), in turn, implies that
u = - (r - s), z = s, so that (2.6) can be thought of as a system with
dependent variables r and s.

Let v(t,t) S x (t,t). This variable, which measures the amount of
7 variation of two nearby characteristics at time t with respect to their

initial positions, plays the key role in our analysis. Note that
v(0,A) = 1. We will subsequently show that, for large enough initial data,
v(t,&) approaches zero in finite time. Thus the distance between two
characteristics with initial positions near C must tend to zero in finite
time, and it will be shown that a singularity is formed. Also

u lx(t,E),t)

u ( W t ,A ),t ) X t &

and our analysis will show that ux becomes unbounded in finite time, once we
are able to bound ut(x(t,t),t) away from zero.

In order to establish the formation of singularities in finite time we
require the following constitutive restrictions concerning *.

Assnmtion 2.2: * e C (-i,) with *'(-) > 0 and there exist a2  and 02

such that 0 < a2 4 ) a( 2
2 ,(*) 2

We note that when '(-) '(*) then the above assumption is a consequence
of Assumptin 2.1. Finally, we require that the memory kernel a be positive,
decreasing, and convex in the sense of

Assumption 2.3: a(*) e C 2[0,-) and

(-I)ia i(t) 1C 0 1 0,1,2

with strict inequality to hold at t - 0.

III. FORMATION OF SINGULARITIES. Before stating our main result we
begin with the following local result for (1.1)1 the reader is referred to (21
Proposition 4.1 and Remark 4.21 for the proof.

1 2
Proposition 3.1. Let a',a" e L (0,-), *,* e C (a), (0) - *(0) - 0,
*'(0) > 0, and there eixsts a constant K ) 0 such that
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#'(C)) K > 0 (C 6 R)i let u0 e 2 (i). There exists a To > 0 and a

unique solution u e C I(R x [0,T 0 )) of (1.1). Moreover,

Utt,utxUxx e C([O,T]hL2(R)) for every T < T0 , and if To < *

ha sup f (u2 (x,t) + u2 (x,t) + u2 (x,t) +
t4?R a t x

+ u2  (x,t) + 2

xx uxt(x,t) + ut(x,t)dx- .

The reader should observe that the assumptions of Proposition 3.1, while
somewhat different ara considerably less restrictive than Assumptions 2.1-2.3
abovei no restriction on the eSize" of the initial data u0  is imposed
here. It should also be observed that Proposition 3.1 (or similar existence
results) forms the basis for further study of the nature solutions of (1.1).
Standard ODE theory applied to (2.5) justifies all the formal calculations of
Section 2 establishing the equivalence between (1.1), (2.2), and (2.6), under
the present hypotheses, for as long as a smooth solution of (1.1) is known to
exist.

our main result on the development of singularities in a smooth solution
of (1.1) in finite time is:

Theorem 3.1. Let Assumptions 2.1-2.3 hold. Let u be a C1  solution of

(1.1) with u0 e C I(-ai). Assume further that there exists such that

uO(C) < 0. If lu'(C)l is sufficiently large then there exists T < - such

that x C(TC) - 0 and (x(TC),C)= -

Proof. Assume that u is a C1  solution of (1.1) on R x [0,-) and
consider the initial value problem (2.5). Assumption 2.1 coupled with
standard COD theory allows us to obtain the differential equation for
v(t,C) a xC (tIC). Differentiating (2.5) yields

dv - *u(u(x(te,[),t)uC(x(t,C[),t), v(0,C[) = I.

Since V(u) -r- , we have

Mu r - C r - xC (2.8)

thus

1u- --- rE -- sv, .
C 'u) aXv

From (2.2a), (2.4) we have

*du

dt 39
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so that

1 1 duU I + ) d- v

and (2.7) takes the form
dv *Cu) -(u) du

dv (u r UA v ,v(0,9) I
t #.(u) C + (u) dt '

Rquation (2.9) is an ODE for v along characteristics having I#'(u)]-1 as
an integrating factor. Thus

1 1 ) V(U) r dr
v(t) C - 0  ) 0 '2 (u)

or equivalently

v(tC) - 4'(u(x(tC),t))

*'(u0 (C))

(2.10)
t Ut1 + *'(u 0(C)) f 4 (u(x(rC),r)) 2r~(cC.~r41 (Ur (x( ,C),T)d-T]

0 *' (u(z(r,),c))] 2

We invoke Assumption 2.1 again. Since r 9(x(TC),T)l a W'(u) (
T-0

is negative, it will remain negative for t 6 [0,T] for some T1 .

The remainder of the proof of the theorem hinges on estimating T1  in
tem of * 1 ' 1 and a. Let C be defined by #'(u 0 (4))uI(C) - -C and note
that C is positive. Then there in a T1  such that

-C 4 rW(x(t,),t) 4 - 2 for t e (0,T1 • (2.11)
C 2

Since *'(u) •S 1 , 0 < a 1  '(u) C k, then .'(u) n42 (u)

'(u(x(c:,u:)) r (x(r,C),r)dT 4 - ! t
o 2 C 2 2

Therefore, one has

v(t,C) ( '(u(x(t'C)t)) C 6t1 (2.12)*'(u0 (C)) 1 2  o

k2

The right hand side of (2.12) becomes zero at t -- lC1 since v(0,9) - 1,
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22

v(tt) must vanish at a time T < By taking C large enough we
2k2  al 1C

insure that - < T1.

The next task is to show that TI is independent of C. Equations (2.6)
combine to yield.

t
drt

= a'(O)*(u(x(t,0),t)) + f a"(t - T)P(u(x(t,&),T))dT . (2.13)
0

Differentiating (2.13) with respect to E (justified by Assumptions 2.1 and
standard theory) gives

drdr&= a'10)t'lulxlt,&l,tllu Wxt, lt).
dt

(2.14)

t
+ f a"(t- TI'(u(xlt,I,T))U (x(t,&),T)dT

0

We evaluate (2.8) at (x(t,),T)

#'(ulxlt,&I,T)Iu I(Xlt,),T) - r&(x(t, &),T)-S (x(t,&),T) (2.15)

and combine (2.14) with (2.15) to obtain

dr - a'(O) V(u) (r - s )I
dt W'u xt, ),t)

(2.16)

+t a(t- T) VS(U) (r - s)l dT
0 *'(u) & (x(tC),T)

Since r(x(t,)T)I = *'(u0 lCllu,(C) - -C and stxltI)IT)I - 0 ,

t=0 t-0
T-0 Tin0

there exists T1  such that

-C 4 r &(x(t,&),T) - & (x(t,C),T) C (2.17)

and

-C < r (X(t,&),T) C - (2.18)4 2

for 0 4 T 4 t 4 T Recall Assumptions 2.2 and 2.3. These and inequality
(2.17) imply that lor 0 • T 4 t 4 T we can estimate the integral in (Q,16)
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by

t *()t

f a"(t V (u) (r s )dt > -c f a"(t - )) dr0 0'(u) -0 0'(u)

t
)-CO2 f a(t - r)dT •-C82 (a'(t)-a'(0))

0

Therefore, from (2.16) using a'(0) < 0, r(x(t),t) - (x(t,,t) < 0 we

obtain

dr
) a'(0) (u) (r s) - CB2(a'l(t) - a'(0))

dt '(u)

• a 2 a'(0)(r - se) - C 2 (a'lt) - a'(0))

or

d a2a'(0)t 
-a 2a'(O)t

- (e r ) - 2a' (O)e s

-a2 a'(10)t

-CB e (a(t) - a'(0)), 0 4 t 4 T

Integrating the above inequality yields

- 2a' (O t t -a2a'(0)T

e r((x(t),t) + C 0 -O a'(0) f e 2 s (x(TA),T)dt2 0t
(2.19)

te-a a'C()) t

-cO2 ft 2 (a'(T) - a'(0))dT, 0 C t T
0

Inequality (2.19) reduces to

a a'l(O )t t a2 a'0)(t-t)

r > -Ce - a2a'(0) f e 2 s (X(T,i),T)
0

(2920)

t a 2a'(0)(t-T) 82 82 a2a' (O)t

-CB 2 f e a'(T)dT--C+-Ce , 0 t T1
0 (12

* Next, Recall that

t

a (xt,FUt) - f a'l(t- 1) - s* ) dr0 'u r (xlt,ID,) -,

I48
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Assumptions 2.2, 2.3 and inequality (2.17) imply that

t
0 4 cL2 f  a'(t - x)(r - s I d 4 s t(x(t,),t)

0 (x(t,),r)

t
( 82 f a'l(t - r)(r - s dr , 0 4 t ( T

0 "(x(t,F ), 1

Thus the second term on the right hand side of (2.20) can be estimated as
follows:

t a a'(0)(t-T)
-a 2a'(0) f e 2 S(X(T,&),T)dT >

0

(2.22)

2 ,t a2a'(0)(t-T) t
-a 2a'(0) f e f a'(T - n)(rr - sel dndT, 0 < t 4 T

0 0 (x(T, ),n)

The integral on the right hand side of (2.22) is bounded below by (cf. (2.17))

02 C t a~a 0 tT

a a'(0) f e 2 (a(T ) - a(0))dT, 0 4 t 4 T
0

We next obtain a uniform estimate for Ti  (independent of C). Combining
(2.18), (2.20) and (2.22) yields

C -a2a ' (O)t a2 t a2a'(O)(t-T)
- C+ TCa'(0) f e (a(T) - a(o))dT

0
(2,23)

t 2a' (0)(t-T) 0 2 02 c2 a'(0)t
-C132 ft e a'(T)dT - C + Ce , 0 4 t 4 T I

in which C > 0 is a factor of every term. Thus letting

OLa'l(01 t Q 2 a' t aa' (0 ) (t--x)

F(t) - 1/2 - e2 + 2 (0) f e "2 a(T) - a(0))dT

0

t a2 a'(0)(t-T) 0 2 02 a2a'(0)t

_0 2 e a(T)dT - - + - e
0 02 02

inequality (2.23) is equivalent to F(t) ( 0 for t e [0,T ). But
F(0) = -1/2, so that there exists T I T1 (a(*) 011 1), Independent of

C, such that F(t) ( 0 for 0 < t 4 T
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The proof is now easily completed as follows. We have

u_____t,__,t u~lxlt, ),t)
Ut(x(t,&),t) u tt,_),t____

u xW Ot) x t(t, ) v(t, ) "

Assumption 2.1, together with (2.8) and (2.17) imply that u (x(t,),t)
remains bounded away from zero for t e [0,T ]. But as we hive shown above
v(tF) = x (t, ) vanishes at a time T, 0 < T < T I, for C sufficiently
large, whert TI depends only on a ,81 and a, but not on C. Therefore,
u (x(t,t),t) becomes unbounded at T which contradicts the assumption
tt u is a smooth solution of (1.1) on R x (0,00) and completes the proof
of Theorem 3.1.

Remark 3.1. Assumption 2.1 may be replaced by 2 ) 83 > 0 for

some 8 and the proof of the above theorem remains unchanged. Of course
3Assumption 2.1 can be weakened further if one knows that solutions of (1.1)

satisfy tne a priori estimate sup lu(x,t)l ( const.
Xet

Remark 3.2. While Theorem 3.1 establishes breakdown of smooth solutions
of (1.1) for sufficiently large data, it does not prove the developmemt of a
shock front. Numerical evidence for this more complex phenomenon has been
found by Markowich and Renardy [9] for the Cauchy problem associated with
(1.2), (1.3) in the special case * E 0 when the smooth data becomes
sufficiently large. This analytical problem in under active study.
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SIGNIFICANCE AND EXPLANATION

Problems arising in continuum mechanics can often be modeled by
quasiLinear hyperbolic systems in which the characteristic speeds are not
constant. Such systems have the propertythat waves may be amplified and
solutions that were initially smooth may develop discontinuities ("shocks") in
finite time. Of particular interest are situations in which the destabilizing
mechanism arising from nonlinear effects can coexist and compete with
dissipative effects. An interesting situation arises when the amplification
and dissipative mechanisms are nearly balanced and the outcome of their
confrontation cannot be predicted at the outset. Examples are provided by
quasilinear second order wave equations with first order fricitional damping;
it has been shown that when the initial data are sufficiently smooth and
"small" in suitable norms, classical solutions exist globally in time.
However, if the smooth initial data become sufficiently "large" in a precise
sense, the smooth solution develops a singularity in finite time, no matter
how smooth one takes the data. Thus the dissipative mechanism is not
sufficiently powerful to prevent the breaking of waves for large enough data.

A considerably subtler dissipative mechanism is induced by memory effects
of elastico-viscous materials. Using energy methods Dafermos and Nohel [1]
have studied the motion of a one-dimensional homogeneous viscoelastic body
(governed by equations (1.2), (1.3) below). They show that the memory term in
(1.3) induces a weak dissipative mechanism under physically reasonable

constitutive assumptions, which, for sufficiently "small" and smooth data,
prevents 'he breaking of waves; indeed, a unique classical solution exists
globally in time, and the solution decays as t + m. A natural and open
question (except in very special cases) is whether this weak dissipative
mechanism can also prevent the breaking of waves for large enough smooth data;
experimental evidence suggests that it cannot.

In order to gain a deeper understanding of this complex phenomenon we
study the simpler model problem stated in the abstract, under comparable
constitutive assumptions concerning the functions 0,+ and a. Here the weak
dissipative mechanism which is induced by the memory term Acts exactly as the

one for the viscoelastic problem for sufficiently smooth and small data (see

[2]). In this paper we show, under physically reasonably constitutive

assumptions, that this weak dissipative mechanism ca not overcome the shock

forming tendency of the nonlinear Burgers operator 5U + *(u) when * is
convex; indeed, a singularity develops in the smooth solution in finite time,
whenever the smooth initial data u0 (x) have u'(x) < 0 and (-u;(x)) is
sufficiently large.

It is possible to gain some insight into the problem -"ider study by
considering the following simple example without memory terms:

ut + Uu + au = 0

u(x,0) = u 0(x) (x e R)

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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in (0.1) he memory term is replaced by au where a > 0 is a constant, and
(Y) = u /2, is a strictly convex function on R. If u0  is smooth
(C 0(R)), (0.1) has a unique classical solution u valid on a maximal

interval R x [0,T 0 ), 0 < T 4 -. Suppose the solution u of (0.1) existsglobally in t. Differentiate (0.1) with respect to x obtaining

u + uu +u 2 + au 0.
tx xx x x

Putting w = ux and noting that wt + uwx is the derivative of w along the
characteristic curves x(t,E) of (0.1) defined by the ODE

dx
dt = u(x(t,&),t), x(0,) = ,

we see that w satisfies the ODE

(0.2) td + w2 + aw = 0, w(x,O) U(x)dt +w0

d a aalong the characteristics, where t - + u -. Integration of (0.2) shows
that if u'(x) > -a (x e R), w = ux  remains Munded for all t > 0 and the

* 0smooth solution u of (0.1) exists globally; if, however, u;(x) < -C for

u'(x)
some x, then w-u + as t + I log 0 i.e., the classicalsoe ,thnw x  a a + u0 ()

solution u of (0.1) develops a singularity in the first derivatives in
finite time, no matter how smooth the initial data u0  is taken. This
elementary method does not, unfortunately, extend to the problem with memory
terms under study, and for this reason our analysis is different and
necessarily considerably more technical.
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THEORIES FOR CONTROL OF NEUROTRANSMITTER RELEASE
AND FOR TWO PROBLEMS IN PHYSICAL CHEMISTRY

< Lee A. Segel

Department of Applied Mathematics
WeizmannjT%&titute, Rehovot 76100, Israel

and

0 Department of Mathematical Sciences
(ensselaer Polytechnic Institute, Troy NY 12181

-ABSTRACT. Three problems are surveyed: )9-( The control by cal-
cium entry of neurotransmitter release; H(2" The spatially inhomogen-
eous polymerization reaction when a layer of initiator is placed next
to a reservoir of monomerj&4)t50 A spinodal decomposition 'type of
phase change modelled by the nonlinear fourth order Cahn-Hilliard equa-
tion. (_

I. INTRODUCTION. This report treats three aspects of the author's
recent research, respectively in collaboration with H. Parnas, M. Fal-
kovitz, and A. Novick-Cohen. First, in a kinetic study of neurotrans-
mitter release we sought experiments with striking qualitative beha-
vior and attempted to explain them by phenomenological modelling that
was in accord with broadly accepted biological principles. It turned
out that saturation was important in all the processes involved, so
that nonlinear effects turned out to be vital. The greater understand-
inq of release can be useful in better comprehension of the effects
of druqs and toxins.

The second problem concerns spatially inhomogeneous polymeriza-
tion. At the outset, we were faced with an infinite set of equations
of reaction-diffusion type, with diffusivities that depend on the ex-
tent of polymerization. Considerable thought was given to appropriate
simplification. In the end it was possible to achieve a better under-

standing of a process that may be of industrial importance.

The original motivation for the third problem came from experi-
ments by our colleague G. Tanny wherein phase changes were manipulated
to "cast" membranes for desalination and other applications. A general-
ization of the diffusion concept is required, that takes into account
the free energy cost of spatial inhomogeneity. Appropriate to our

purposes was the Cahn-Hilliard equation, a nonlinear parabolic equation

that is fourth order in spatial differentiations. The analysis con-

centrated on elucidating some effects of the nonlinearities.

In this survey, we sketch some of the broad features of the pro-

blems and the results we have obtained. The cited references may be
consulted for further detail.

II. NEUROTRANSMITTER RELEASE. Nerve cells generally communicate

with each other or with muscles by means of transmitter substances that

are released from the nerve terminals after the arrival of an electrical

impulse. Facilitation F occurs if, after one or a few impulses, a
test impulse is given and the amount of transmitter released for this
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impulse is greater than for an initial control impulse. That is
F = LI/L 2 where LI(L 2 ) is the amount of release after the control

(test) impulse.

We shall describe a phenomenological theory of transmitter re-
lease based on a description of the three processes of entry of Ca
into the terminal, removal of the internal Ca, and releasc of trans-
mitter as a function of the internal Ca concentration at the time
of the triggering impulse. Our model is based on observations (Dodge
& Rahamimoff, 1967; Rahamimoff, 1968; Cooke, Okamoto & Quastel, (1973)
that

(a) Transmitter release is a saturating function of external

Ca concentration Ce .
(b) For short intervals between impulses (e.g. 5 ms) the facili-

tation F is a decreasing function of the external Ca
concentration but for longer intervals F increases as the
external Ca concentration increases.

(c) Log - plots of release as a function of log C. rise mono-

tonically from an asymptote as log Ce  -'- to another asymp-

tote as loq C

Let us suppose for the moment that entry is some unspecified in-
creasing function of the extracellular Ca concentration C.:

E = E(C ), 3E/aC > 0 . (2.1)

Experimental result (a) suggests that rplease L is a saturating
function of intracellular concentration C at the time of an impulse.
If this is the case, Parnas and Segel (1980) argue that result (b) re-
quires the assumption that removal saturates at high Ca concentra-
tions. The simplest saturating removal equation is

dC/dt = -pC/(K -+C), v and K constants. (2.2)

At the first impulse, the intracellular concentration is raised by the
entry E(C e). Assuming that this very fast process is instantaneous,

and neglecting the generally small "residual" amount of Ca already
present, this gives C(0) = E as an initial condition for (2.2), so
that

K InC + C = -it + K InE + E. (2.3)

As a simple example of the sort of reasoning involved in this type
of analysis, we will show that result (b) cannot be explained wibh a
linear release hypothesis if saturation in release is neglected. Sup-
pose that release is indeed linear, and consider the facilitation at
time t, i.e. t units after the control impulse. We have

FMt E + CM I r _ (Lc E (2.4)
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But by implicit differentiation of (2.3)

3C _ c K +E

3E E K +C

so that

aF C E-C 0
3E 2 K +CE

Thus, contrary to (b), F is always larger at larger values of E
(or of Ce). A similar analysis shows that aF/aE remains positive
even if (2.2) is replaced by a removal law that is both saturating
and "cooperative"

dC/dt = -,Cn/(K + Cr), C(0) = E.

Based on considerations of the type just discussed, we arrive at
the following hypothesis for the dependence of release L on the intra-
cellular calcium concentration C:

L(C) = Cn/(KA + Cn), (2.5)

wh-re the exponent n allows for the possibility of cooperativity
in the underlying chemical reactions. Study of experimental results
(c) (Parnas & Segel 1981) leads to the postulation of the entry equa-
tion

E(Ce) = cC /(K + Cr) . (2.6)
e* e E e

The final governing equations thus consist of (2.2), (2.5) and (2.6)
with the initial condition for (2.2)

C(0) = E + C , (2.7)

where the residual calcium concentration C has been included to af-
r

ford further flexibility in the moxel.

Parnas and Segel (1982) discussed how the theory could be used
to try to make a more accurate assessment of the affects on release
of drugs and toxins. For example they examined findings of Oberg &
Kelly (1976) that I-bungarotoxin increased release but that the slope
of the curve of log release vs log Ce  appeared unchanged. From

the fact that no increase in release was observed when Ce P 0, they

deduced that an effect on removal is unlikely. The theory indicates
that the observations are due to changes in the maximum entry parameter
£ or in the entry saturation parameter K , and suggests that more ex-
tensive measurements of release as a function of C would be informative.

e49
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So( Parnas et al (1981) for experiments confirming saturation.

III. UNSTIRRED BULK POLYMERIZATION. A second project treated
experiments by Ozari and Jagur (1975), in which a layer of pure sty-
rene was poured above a solution of sodium naphtalem in TPPA. The
container was kept at rest for a few days. At the initiation of the
process a strip of low molecular weight dead polymer was established.
Above this strip, a relatively thick layer of gel, consisting of high
molecular weight living polymer was formed. The gel-liquid boundary
was observed to elevate slowly with time, starting from the bottom of
the initiator-monomer interface. Particularly noteworthy is the
fact that the polymer obtained by this process was characterized by
a narrow molecular weight distribution.

In a first attempt at formulation, equations were written for
concentrations of initiator (I), monomer (M), activated monomer (P1),
n-unit polymer (Pn), unreactive polymer (Pn), impurity (K), and inac-

tive solvent (S). With J's denoting ordinary diffusive fluxes (pro-

portional to concentration gradients) and k's the various rate con-
stants (with reactions assumed irreversible), these eqations were

taken to be

DI/Dt = -k.IM-V(J +Iv B

DP kiIM P-k P Mk-k P K-V.(J + PvB)DPI/Dt=1 p1 t-l -

=Pn D k p (P n-I P mK - V- (J n +P n v B )

DP*/Dt=k P K-V-(J* +P* v)

n in --n n -= k Sk AMV .J +y B

DM/Dt = k - A v

DK/Dt = -k A K -BV- +Kv B

t =-(~k )

DS/Dt = -V(J +SVB

-_S
where A is the concentration of actively polymerizing centers

A(,t) = P (, t) ,

n
B

and v is the bulk velocity (Crank 1975)

B
v [I(nmM+m )J + J(nmM mKJ* + mm i +M a~ +M J/P

n n"

P = m (I+A) +mM(N+M) +m K K+m S S

mI, mM, mK, mS  are the molecular weights of initiator, monomer, im-

purities and solvent respectively.

After suitable scaling and consideration of the various parameter
values, the problem was essentially redi ,ed to a consideration of just
two dimensionless equations, for concentrations of monomer and active
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centers in the domain above the original initiator layer:

M = -AM +A[(I-M)DM

At = -)(ADM z )  
'

Here the dimensionless parameter A can be regarded as the recipro-
cal of a Thiele modulus, giving the relative importance of reaction

and diffusion. Initial and boundary conditions are

M(7,O)=I, A(z,O)=O, z>O; Mz (O,t)=O, t O

Choice of the function 0 that gives the initial extent of polymeri-

zation depends on the mechanism that is assumed to dominate in the
first few moments of the process. At first this mechanism was assumed

to be purely diffusive, but this produced results at variance with the
observations. Account was then taken of the exothermic nature of the

initiation reaction; a calculation showed that considerable convection
would result. A fairly elaborate numerical analysis then produced re-

sults for various assumptions concerning the nature of the dependence

of the monomer diffusivity D on the local extent of polymerization

as reflected by the monomer concentration M . The following physical
picture emerged.

The initiation step of the process lasts for a short time - about
a minute. During this step, changes in the monomer concentration are

neglibible. The initiation is divided into two sub-steps. At first
initiator molecules penetrate into the domain occupied by the monomer,
with which they react to form active centers capable of further poly-
merizing. During this sub-step, active centers are noticeable in a
strip whose thickness grows at a rate of order VDt. During the se-
cond sub-step, the above process is accompanied by convective mixing
in a layer near the interface between the original two phases. The
active centers, formed out of the initiator which penetrates into the
monomer-rich domain, are dispersed in a layer with thickness propor-
tional to /Kt (where K is thermal diffusivity), which is much
wider than the previously mentioned strip. During the initial step
a small amount of monomer penetrates into the initiator-rich domain,
where its effect is noticeable in a very thin strip, with width of
order #D<< Dt. Here D is the diffusivity of monomer in the

s s
rather viscous solvent for .the initiator.

The main part of the reaction, which lasts for days, is charac-
terized by three physical processes. Active centers combine with
neighboring monomer molecules. Fresh monomer molecules, from the do-
main which is void of active centers, diffuse into the domain which
contains active centers, to replace those molecules which were con-
sumed by the polymerization. The penetration of monomer molecules
into the "polymerization zone" results in a swelling of this layer.
The initial monomer domain, which was originally homogeneous, is se-
parated into two phases - gel, in which most of the active centers are
located, and liquid, which contains :malL amounts of active centers.

The gel-liquid front propagates at rate proportional to VSR
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As a result of the penetration of monomer into initiator during
the initial step, a barrier is formed which prevents supply of addi-

tional initiator molecules to the original monomer domain. During
the main step of the process the active centers, which are located
not too close to the barrier, react in a neighborhood very rich in
monomer. This fact results in the very narrow molecular weight dis-
tribution which is the salient observed feature of this polymeriza-
tion procedure.

For further details, see Falkovitz and Segel (1982).

IV. NONLINEAR PROPERTIES OF THE CAHN-HILLIARD EQUATION. Numer-
ous attempts have recently been made to explain the dynamics of pat-
tern formation via phase transition. Sufficient cooling of a binary
solution may lead to phase separation which will proceed in one of two
main ways: either by nucleation in which sufficiently large nuclei of
the second phase appear randomly and grow, or by so-called spinodal
decomposition in which the whole solution appears to nucleate at once,
and periodic or semi-periodic structure is seen.

In the work reported here a continuum model due originally to
Cahn and Hilliard (1958) was analyzed. Early linear treatments of
the Cahn-Hilliard equation gave unphysical results, and the Cahn-Hil-
liard equation to a great extent fell out of favor and was deemed in-
capable of describing phase transition. The non-linear Cahn-Hilliard
equation was for the most part discarded as untreatable. In its place
many more involved formulations have developed in which statistical
fli'tuations are included. Here we have reverted to the original
equation and attempted to ascertain to what extent the deterministic
nonlinear continuum model is capable of describing the intricacies of
phase separation which have been observed experimentally and theore-
tically.

Study of the Cahn-Hilliard equation can be regarded as a useful
supplement to the classical pattern-formation stability theory of the
B6nard and Taylor problems. The "negative viscosity" destabilizing
mechanism occurs in other physical contexts (Kuramoto & Yamada 1976)
and as has been indicated, pattern formation via phase transition is
of interest for important technological applications. On general
grounds perhaps the most interesting feature of the Cahn-Hilliard
equation Js its close connection with a "free-energy" or Liapunov func-

tional. A long range research goal is to understand what role the
existence of such a functional plays in determining qualitative beha-
vior of nonlinear partial differential equations in the vicinity of
bifurcation points.

The Cahn-Hilliard equation is

r 2 1
= V-[M(C)V(-(c) - KVc-otJ

where in our analysis f will be taken to be a fourth order polynomial
with three relative extrema. In the absence of accurate information
about its behavior as a function of the concentration, K will be as-
sumed to be a constant. On the other hand, M(c) which is known to
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be highly concentration dependent, will initially be restricted only
by the condition M (c) >0.

The one-dimensional version of the rescaled Cahn-Hilliard equa-
tion for the composition perturbation c around a uniform concentra-
tion c is

0

2 3
c t = [M(c)(±c+Bc +C -c xx) XIx

wheye the plus (minus) sign is used if the uniform solution is linearly
unstable (stable). We have found a class of solutions to this equation
in terms of T _ (c-a)/(c-8) (Cayley's method of reduction):

dT c-aS (AT2-BI 1/2 (A2T 2)/2 W- '

Here 4 is a Jacobian elliptic function. There are, however, twelve
different such functions. The permissible forms are determined by lo-
cating those parameter regions {A,A 2 BIB 2 ) that will allow real

bounded periodic solutions for c(x; Al, A2, Bi, B2 ), and imposing

the condition that total mass is conserved. The nature of the solu-
tions is discussed in the paper of Novick and Segel (1982).

Tn classical thermodynamics a homogeneous solution c(x) E co

is considered to be stable if there does not exist a two-phase confi-
qiration whose total free energy is lower than the total free energy
of the homogeneous solution. If such a two phase configuration with
lower free energy does exist, the original homogeneous solution is con-
sidered to be metastable or unstable depending on whether a finite or
infinitesimal concentration change is necessary to provide a lower
free energy.

Classical thermodynamics can only deal with situations that are
infinitesimally close to spatial and temporal uniformity. To brvak
free somewhat from these limitations and to put the study of stability
into a strictly defined context, Novick and Segel (1982) applied to
the Cahn-Hilliard equation the idea of the limit of monotonic global
stability as studied by Joseph (1976) in the context of fluid dynamics.

Closed finite regions are considered, i.e. we will require

Jiboundary 
0

Natural boundary conditions will also be enforced:

c 0.
anlboundary
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The mobility function will be assumed to be a positive non-in-
creasing function of Icl such that

1 (dM)
2

2 <d12 ,

M (c)

i.e., M(c) will be non-increasing and M(c) >M(O) exp(- /-2 Ic).
Enhanced generality will be obtained by considering the parameter B
to be time dependent.

THEOREM. Consider material confined to a cube of side L. If
c + c0 (c a constant) is a solution of the Cahn-Hilliard equation

we define B(L) by

-sgn B J 2cM(c) (Vc) 2dv

sup sup 2 2 2
B(L) t>O CEH(L) f' M(c)[(l+3c )(Vc) +(V c)2]dv

R
L

2 -2
For B < i (L) in the parameter region where c is stable to in-

finitesimal perturbations, consider the "energy" of all perturbations
c(x,t)

1 2E(t) = j c dv

RL

This energy decays, since

2A IB(-T)ECt) < e(0) expt- -- (- M(C(T))dT}

Lo B

for some A > 2/3, where M(c(t)) is the mobility evaluated at some

c(x(t),t). Furthermore if B2 (0) > 2(L), then there exists an admis-
sible initial perturbation c(x,t) such that dc/dt >0 at t =0.
Here the class H(L) of admissible c(x,t) will be all smooth func-
tions that satisfy the composition conservation constraint and the
boundary conditions. See Novick and Segel (1982) for an outline of
a proof of this theorem.

Beyond the limit of monotonic global stability, all perturbations
to the uniform state decay monotonically, whereas within this limit
there exist initial conditions which will cause the "energy" to grow
initially. Knowledge of the existence of the one-dimensional equili-
brium solutions turns out to be crucial in determining where the limit
of monotonic global stability lies. The possibility that this limit
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does not coincide with the coexistence (neutral stability) curve but
rather lies beyond it gives rise to the possibility of a narrow "ex-
citable" region just outside the coexistence curve where an enhance-
ment of the fluctuation level without the appearance of phase separa-
tion would signal the proximity of the two phase region. The actual
existence of such a postulated excitable zone could be tested experi-
mentally, or perhaps theoretically by further determination of the
location of the limit of monotonic global stability.
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LINEARIZED DYNAMICS OF SHEARING DEFORMATION

PERTURBING REST IN VISCOELASTIC MATERIALS

A. Narain and D. D. Joseph
Dept. of Aerospace Engineering and Mechanics

University of Minnesota
Minneapolis, MN 55455

This paper extends 'a earlier work [6, 7] on the propagation of

0jumps in velocity and displacement for shearing deformations imposed im-
pulsively at thc boundary of v iscoc]astic fluids and solids obeying ccon-
stitutive equations in integral form with arbitrary kernels of fading
memory type. The earlier work is briefly reviewed in §1 and we give new

results. Ir §2 we relate old results to experiments. The limiting vel-
ocity disyibution for start-up of Couette flow between parallel plates

is a near shear. It is common practice to assume that the real motion

if/close to linear shear long before the stress approaches its asymptotic

steady state value. When the simplified kinematics are assumed, the evo-
lution of the wall shear stress is determined by material functions, in-
dependent of deformation. These material functions are then determined

ty experimental measurements. We argue that in some cases only very spe-

cial features of the material functions can be determined by this method

because (in all cases) the early time behavior of the motion is incor-
rectly given by the kinematic assumption. The assumption that the early

part of the stress response can be ignored is at best an approximation

when the dynamics shows the presence of a delta function singularity in

the wall shear stress at time t-0 and at subsequent discrete times of
-eflection off bounding walls. This delta function contribution cani t

be ignored even if the steady state is achieved rapidly. In fact tht

early time behavior of the material functions can be obtained from ex-

periments only by using a correct theory based on dynamics rather than
kinematical assumptions. When this is done it is possible to interpret

data showing stress jumps with linear theories based on commonly used

constitutive equations and to interpret early oscillations in the ob-

served values of material functions in terms of repeated reflections off

bounding walls. The foregoing remarks apply equally to the interpre-

tation of stress relaxation experiments and other experiments involving

impulsive changes in velocity and displacement. In §3 we derive formulas

for the amplitude of jumps and reflections for fluids sheared between

concentric cylinders. In §4 we develop integral methods of solution
analogous to Duhamel integrals for inverting start up problems with ar-

bitrary data perturbing rest. In 15 we apply our analysis to start up

for viscoelastic solids and show how creep depends on the kernel of the

integral equation. 499
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11. A Summary of Previous Work on Step Jumps of Velocity and Displace-

ment.

In our earlier work [6], we treated the problems of step increase

in velocity and displacement using a constitutive expression of the type:

(1.1) T -- pl + UA l+foP(s)G(s)ds

where, 1(s) = G and G: (0,= ) -- {xep x>

is assumed to be (i) strictly monotonically decreasing, (ii) continuous

and piecewise continuously differentiable, (iii) of 0(e- s ) as s-- for

some )>0 and, whenever needed, we may assume (iv) G' (s) < 0 is strictly
monotonically increasing to im G'(s) = 0.

Constitutive equations such as (1.1) may be justified in various

ways (see Saut and Joseph [11] and Renardy [9]. We considered two sing-

ular problems in which the velocity is assumed to be in the form V =

eyV(x,t) in the semi-infinite space above a flat plate and

-[x,y,z; 0<x<-, -=<y<-, --n<z=].

At x=0 we imagine either a step-jump in velocity or displacement, satis-

fying

2v t 2V av
(1.2) - (x,t) + f G (s) - (x, t-s)ds - p-(x,t).

ax 0 3

v(x, 0) = 0,

v(x, t) is bounded as x, t-v-.

And for step-increase in velocity at x=0

(1.3) v(0, t) - H(t-0)

For the step-increase in displacement of the bottom plate we have

(1.4) v(0,t) - 6(t).

11.1 Linearized Simple Fluids of Maxwell Type (U-0).

The solution of problem (1.2) and (1.3) is given in §4-6 of [6] as:

500V (X, t) f f(x, t) H (t-ax)



tives at s=0 are unbounded; that is the contact between the vertical

axis and the curve G(s) at s=O is C smooth. Some form of continuity

of solution on kernels possessing nearly identical features globally

might be expected. For example we may construct kernels with G'(0)= - ,

and even with C contact at the vertical axis whose graphs are indis-o

tinauishable from kernels for which G'(0) is finite in all neighborhoods

bounded away from s=O. This may lead to smooth, shock like solution

(see Fig. 1.1). Such problems are in some sense like the ones which

are perturbed with a small viscosity v. We shall remark in §1.3, that

the small viscosity leads to a transition layer of size p which collaoses

ontc a shock as p-0. For small p the solution is smooth, but shock like

(see rigs. 1.1, 1.3). The heuristic argument for the equivalence of

problems for kernels of type (i) with those perturbed by a small visco-

sity is as follows. We are given G(s), s>0 such that G(0) is finite,

G' (s)< 0, s> 0, and G'(0) - . Now we implement the construction of a

comparison kernel of Maxwell type. First choose a small time c. Then,

at G(e) draw the tangent G'(e). This tangent pierces s=0 at the value

G M(0). Define GM (s)

G'(k)s + G M(0), s<

MM
G(s), s > c

We may write

t G(s) ax2(x,t-s)ds = .G (S -2 (x,t-s)ds

0 x 0

C~ 2
+ (G(s) - GM(s))a 2 v- (x,t-s)ds

0 
" ax2

Using the mean value theorem the last integral may be written as

2
£[G(s) - G(S)]- v (x, t-s), O<s<E.

M ax2ax2

Then with £0 we get s(E)+0 and we approximate the perturbing term with

a 2
£[G(0) - G (0)]2V(x, t).M 2ax2

The approximating problem is like one perturbed by a small viscosity

W=E[C(0)-G M(0)].

The reader may notice that the heuristic argument Just given applies
501
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to any two kernels which coincide for s>c. The implication is that an

approximation to the solution corresponding to one kernel may be ob-

tained by solving a problem with the other kernel, perturbed by a viscous

termgL with a suitably selected viscosity coefficient.

v(x, t)
G(s)

G' (0) = -m -

s 
t

(a) (b)

Fig. 1.1.: Propagating smooth solutions (b) occur when

G(s), satisfying (i), is as sketched in (a).

To establish the above heuristic argument, we let f(x,t) = fl(xt) in

(5.10) of [6] be the solution for the kernel with G'(0) = -- and let

f(x, t) = f2 (x, t) be the solution for the comparison kernel G(s), G(0)=

G(0), G' (s) is finite for 0<s<E and G(s) = G(s) for s>E. Then by choos-

ing small S we reduce the value of IG(iy) - G(iy)l. Now invoking the

continuity of (5.10) with r(y) and p(y), we find that If1 (x,t) - f2 (x,t)

is small.

In the second special case we have

(ii) G'(0) = 0.

In this case, a(x) = 1, and

(x, ax+) = (0)
G(0)

It s necessary that G"(0) > 0 if G is to be strictly monotonically de-

creasing in [0,-). For the case in which G'(0) > 0 there will be a vel--

ocity over -shoot in the neighborhood of t=ax at all x.
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where

1 

a

and f(x,t) is defined in (5.10) of 16). Here it will suffice to note

that (see [10], [6], and (21)

def +
a(x) = f(x,ax + ) = exp(axG'(0)/2G(0)).

(l.) 2- x) xG' (0)3) [ (G (0)' 2 1 G" (0)

t(x, ax+ ) = -ax exp(2G(0) 8 G(O) / 2 G(0)

af f(x, + G'(0) +axf 2  G (0))2 1 G"(0) H .
-x a) = 8f(x, ax -2U + G - 2 G(0)

P, tn G'(0) 2 1 G"(0) 1 2

If G(s) =k s 8 2 G(0) = 2

The solution of step-displacement problem (1.2) and (1.4) is given

as (see in (10.7) of [6]).

af +
(1.6) v(x, t) = -t (xt) H(t-ax) + f(x, ax ) (t-ax)

where f(x, t) is the same as in (1.5).

§1.2 Special Kernels for Fluids of the Maxwell Type (v=0).

There are two special cases (G'(0) = -,G'()=):

(i) G'(0) = - - and 0<G(O)<co

In this case the amplitude a(x) of the shock (given in (1.5)) is zero.

Thus the discontinuity of the data is removed but the support of the

solution nrooagates with the speed c - 1

In fact Renardy 18] has shown that for a kernel (used in certain

molecular models)

G'(s) = -_ exp(-nas), a>i,

n= 1

G' (0) =

G(O) =

the solution is C smooth at the support (see Fig. 1.1). It may be noted

that the special kernel used by Re ardy is such that all of its deriva-
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G(s) G' (0)=0 V(x,t) Fixed:

S t

Fig. 1.2: Shock profile for the case G' O) 0.

§1.3 Viscosity and Transition Layers

Consider the problem of a step increase of velocity for Newtonian

fluids (p>O, D(s) 0 in (.1.1)). The classical solution of this problem

((1.2), (.1.3)) is given by:

(1.7) v(x, t) = erfc(x//4vt)

where v=, and erfc is the complementary error function.
p

If p>0 is small and G has the assumed properties, it can be shown

(see §18 of [6]) that there is a transition layer around the shock solu-

tion with p=0. This smooth transition layer exists in a bounded domain

of {(x,t) x>O and t>O and its thickness scales with j. Thus:

V(x,t) Fixed xI c - T

Fig. 1.3.: Transition layers when 1>0 is small.
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§2 Remarks on the Experimental Determination of Relaxation Functions.

Many experimental measurements of relaxation functions are based

on the incorrect assumption that a linear velocity profile (which is the

t asymptotic state for the problem of step change in velocity) can be

achieved impulsively (see Fig. 2.1-2.3)

Fig. 2.1: Assumed "solution for the step increase
in velocity. The stress is measured after
times t>0. The relaxation function is
determined from the constitutive equation
on the assumed, dynamically inadmissible,
velocity field.

.o 4,<o-e 4)o

Fig. 2.2: Assumed "solution" for the step increase
in displacement. The stress is measured
at times t>0. The relaxation function is
determined from evaluating the constitutive
equation on the assumed dynamically
inadmissible, deformation field.

F -_

Stq&A) £bear RAW ~ ~ AeA ~ 4

Fig. 2.3: Assumed "solution" for sudden cessation of
motion. The stress is measured at times

505 t>0. The relaxation function is determined

- -- -~ Jh'i-pg . -

P0

hI



from evaluating the constitutive equation
on the assumed dynamically inadmissible
deformation field.

However we have shown that the deformation assumed in Figs. 2.1 - 2.3

cannot be achieved at finite times on solutions of the initial-boundary

value problem in the realm of linear viscoelasticity. The deformations

assumed are in fact limiting cases for t--. It is therefore necessary

to explain how and in what sense the customary methods of determining

relaxation functions have validity. The following observations are im-

portant:

(1) The customary methods can always be used to measure "viscosity"

(I + 'Gs)ds) by measurement at large times. But the test is inadequate

to determine separately V and G(s)ds.

(2) Suppose P=O. then the customary methods measure the stress on the

stationary plate as a funciton of time. We are here concerned with the

question whether the experimental measurement is going to be close to

the relaxation function as indicated by the assumed kinematics of Fig.

1.4. In the context of linear viscoelasticity, we will show that this
t

experimental measurement will never give the integral jtG(s)ds for small

time t near zero. However, this integral can be close to measured values

for large times provided that the half life time of discontinuities is

small. For simple Maxwell models with non-zero values of IG' (0)I, this

time can be estimated as -G(O)/G'(0).

To obtain expressions for the shear stress at the wall we consider

the dynamics solution given in §8 of [6] for the step increase in vel-

ocity (see Fig. 2.1). In that solution the moving plate is at x=O and

the stationary plate is at x=1. For the case in which the moving plate

is at x=t we ultimately have simple shear U(1-K) as t-- with shear rate3v def = -I
-- -* - The solution of this problem is:

(2.1) v(x,t) = U[f(x,t)H(t-tx) + {f(x + 21,t)H(t-i(x + 2,))

-f(.21-x,t)H(t-a(21-x))} + {*-) +*.

The stress at the wall x=0 and x=X is given by:

t
(.2.2) TxC>10,t) = G(s) L (0,t-s)ds

f1-J ax
0

and t

(2.3) T<xY>(,t) =0G(s) k-(l,t-s)ds. 506
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If we assume an instantaneous deformation as in Fig. 2.1, then

(1.5) implies that

t

(2.4) T <xy>(x,t) -- G(s)da, xef-O~t.

0

However (2.1) implies that

(2.6) Lv Ot) = r[{-(O,t)H(t-0) - caf(0,t)6(t-O)1
ax 3 x

af
ax

+2{ ..}

and

(2.7 ~ -i~t) 2U1(R,t)H(t-zi) -af(2k,t)6(t-ak)ax ax

ax

+{)+**]

Combining (2.6) and (2.2), we find that in the time interval 0<t<ad2Zj,

the stress at the driving plate is

(2.8) T<XY(O't) = U JG(t-s).L(Ois)ds - acG(t)f(0,0+)

0

but equation (1.5) implies that

Uf(O,0 + v(0,0) + U.

Hence,

(2.9) -T<XYIO,O 4 ) = U/pGZ(0.

Combining (1.13) and (1.10) we get

(2.10) T <xy>(1,t)=O for O<t<ctk and

( 2.11) -T<xy> U, at+) = 2U/p-M xp(( IG 0)

507
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(2.1) and (2.7) with (2.2) and (2.3) that

t
<xv> f

(2.12) -TY(Ot) = G(t-s)y(0,s)ds + tG(t)]

t 0

+2(- G(t-s)-f(2Zs)ds + G(t-(229))exp( G )2 )]

(2a i)

+2[---] +

and

t

(2.13) -T<xY>(t,t) = 2U[G(t-al)f(, +) - Gt-s)(.Zs)ds]
f a

+ af+2U[cG(t-(3c£U)f(3,(3ak) + ) - JG(t-s)-03X,s)ds]
(3a£)

+2[...] +

In order to understand (2.12) and (2.13), we need to know some features

of the function af(2nlt) for n=0, 1, 2,.... For a Maxwell fluid G(s) =

Ke s and (see (7.3) of [6]):

3f 2~ DiA K(2.14) - t-(x, t) U where x = x t =

PA

x

A a

eo e + 7 2 -2 7 2) }

x

We also recall that when a steady state v(x,ao) - U(-x) approached

we have

(2.15) lim T(x,t) = - f G(s)ds, x [0,t].
0

There are two cases to consider: (i) G(O0)p> R-l G(s)ds and (ii)
- =s 0

G(O)p < I G(s)ds. In the first case the initial value of the stress
0

is larger than the final value (overshoot). A typical graph is sketched

in Fig. 2.4(i). In the second case there is a jump of stress less than

the steady state value. This case is %etched in Fig. 2.4(ii).

S I!
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-T 'y (0,t)

UVG ( 0)_ Stress development at the moving plate
as predicted by dynamics.

U

Stress development predicted by the
dynamically inadmissible solution of
Fig. 2.1

Fig. 2.4 (i)

Stress development at the lower wall of a channel filled with a visco-

elastic fluid of Maxwell type under a step change of shear.

-T<xy> ( Olt) I

U fG(s)ds
0

t

Fig. 2.4 (ii)

Stress development at the lower wall of a
viscoelastic fluid of Maxwell type under a

step change of shear.

Of course the amplitude of jumps in Fig. 2.4 i), (ii) ultimately tend

to steady state value. Moreover in the two special cases G' (0) = -- or

p>0 and small we will have essentially the same response as in Figs. 2.4

with smooth bumps replacing jumps. In any experiment the jumps (for

p=O) would not be vertical because step changes at the boundary are dis-

continuous idealizations of smooth rapid changes and if v(0,t) is a coal-

tinuous function close to UH(t-O), then T<xY>(0,0+) = 0 but T<xy>(0 , c1)

UvG-(0)p and T<xy>(Z, F 2U/ p exp'G'(0)) for some ci c 2 > 0 andU 00 nT<Y(£ 2 )  2GO 2U xp

small. This observation follows as a consequence of the continuous de-

pendence of the solution on the data (61 and our solution for arbitrary

initial data. 509
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The aforementioned results may be applied to the interpretation of

experiments by Meissner [5], Huppler et al [3), among others. They plot

T<xy>(Ot) def n +(t)

T <x y > (0,-) no

where

T<xY>(,t) def +

-U +
--n (t),

= G(s)dsno 0

our analysis shows that at the driving plate

n+ (0+ ) = ,/G(O)p

0 f G (s) ds

Where 
+
n o 0

The stress response at the stationary wall is given by

T <x y > (U , at +) + (at + )  2 RrpG exp (aG'0(0))2(
T <x y > (I,'-) no 0fG(s)ds

Where, = 1

no

Typical representations of experimental results of various authors
are represented schematically in Fig. 2.5 (cf. Bird, Armstrong and

Hassager, [1] Fig. A.4-9).

2.017 C'

a in Fig. 2. (cf B

Fig. 2.5 5101



Representations of stress development in a parallel plate channel
under a step change of velocity. These representations are
supposed to represent the results of experiments.

The experimental results represented in Fig. 2.5 do not exhibit

the stress jumps, at small rates of shear, which are required by linear-

ized dynamics. It is possible that the conditions of the experiments

were such as to make the initial jumps in stress small relative to asymp-

totic (t--) levels of stress. However, stress overshoot could possibly

occur even in the realm of linear theory. We cannot know whether or not

overshoots do occur without reliable estimates of G(O). The methods

which are presently used to determine G(O) are inadequate because they

do not apply at small times. Some micro-molecular models like those of

Kee and Carreau [4], have tried to explain this overshoot by allowing for

such features in a "non-linear stress-strain history model" when eval-

uated at a kinematic assumption of Fig. 1.4. We believe it is now appar-

ent that any such modeling on the above experimental data is meaningless

if the dynamics are going to be neglected.

It is perhaps also possible to explain the oscillations at small

times in the stress observed by Meissner [5] in terms of larger ampli-

tudes of stress which are generated by reflections off bounding wallc

for fluids of the type which support shocks or near shocks (fluids with

G(O)<-, -G'(O)<' with or without a small viscosity.) Nonlinearity also

participates in the results observed at high shears. For example, the

narrowing of the width of peak region in the graphs shown in Fig. 2.5

may not be entirely explained by linear theory.

§2.1 The stress response for the step displacement problem

This problem is associated with Fig. 2.2. The kinematic assumption

muentioned in the caption of that figure leads to a direct formula

U <xY>
(2.16) G(t) =- T (Ot)

The dynamic solution for the linearized problem associated with that

experiment is given in §12 of Eq. [6). Following procedures used to

obtain (2.9), (2.11) and (2.15) we find

(2.17) -T<xY>(0,0+) = G'() < 0

and

(2.18) T<xy>(O) = 0.

- -. - ---



At the stationary plate we have

(2.19) -T<xY>(t,a+) = 2U[-G()-(i,c£+ )
ax

+4aG'(0) f(£,a£+

and

T<xY>(,) = 0

Eq. (2.16) may be a correct representation of linearized dynamics for

large t but it is a false representation of linearized dynamics for small

t.

§2.2 Summary

The asymptotic values of G(t) for large t can be obtained in the

usual way using the kinematic assumptions exhibited in Figs. 1.5 and

1.6. The early time behavior of G(t) is not well represented by the

asymptotic solution and at least should be correlated with the results

of dynamic analysis. In the context of linearized dynamics which should

be valid at least for small shears, we find that

-T <X y > (0 ,O+ ) = UV'LITD

-T<xY>(£,a£+) = 2UriT ) exp (at G'(O)/2G(O))

for the step change in velocity. Here I is the distance from the dri-

ving plate at x=O to the stationary plate and at is the time of first

reflection. In the problem of the step change in displacement, we find

that

-T <XY > (0, 0+ )  G' (0) __
2 G( )

-T xy (Zi9.) = 2U[-G(o) xftl£,al + ) + cG'(0) f(9,a£+)]ax

It may be useful to reinterpret existing experimental results in
terms of the dynamic theory. For example, the constants Ki and pi ap-

pearing in the Maxwell model with finitely many relaxation times

N
G(s) U e-Pi s  512
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could, in principle, be determined by comparing experimental results

with formulas which could be obtained from the analysis of the type of

Kazakia and Rivlin 110].

It may be true that conclusions similar to the ones which we have

considered here for experiments with viscoelastic fluids apply in the

theory of viscoelastic solids 171.

513



§3 Cylindrical vortex sheets generated by sudden spin up of a cylinder

in a fluid

The problem of spin up was considered in §14 of [6]. In this case

the velocity of shearing motion is in circles

V (x,t) = w(r,t)e8

and w(r,t) is defined in

D = {r > a, 0 < 6 < 27r, -w < z}

The boundary value problem for sudden spin up is given (see (14.8) of

[6]) by
t

aw a a 2 (  1 aw

p-(r,t) = G(s) ' r,t-r) + - t (r,t-s)

0

w(r,t-s) ds

r 2r

(3.1)
{aS=1 for t > 0

w(a,t) 0 for t < 0

w(r,O) - 0 , r > a > 0,

w(r,t) is bounded as r, t--

We showed in [6) that the solution of (3.1) is given by

(3.2) w(r,t) = g(r,t) H(t-(r-a)).

where g(r,t) is defined in (14.16) of [6]. Here we derive a simpler

form for g(r, a(r-a) + ) than the one given by (14.19) of (6]. This deri-

vation follows along lines leading to the formulas (5.21), (5.23) in

[6].

We know from (14.11) of [61 ,'hat

(3.3) w(rt) e - du; u Reu>0(3.3 w~~t) 2-fi ji KI/a, pu/6--

where K1 is a modified Bessel function whose asymptotic form is given by514
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(3.4) KI(Z) =/T-1- exp(-z) + 0( 1 )
z

The asymptotic expansion

- _ (O) G' (0) 1

(3.5) G(u) G(- + 2( + 0()u 2 -
u u

was established as (5.16) of [6].

It is easy to verify that:

(3.6) u -u -G'(O) + (1

G (u) A (0) G(0) 2G(0)

- aG' (0) + 0(1)= u 2G(0)

Equation (3.4) and (3.6) imply that

(3.7) K(r fP-(u)
(3 7) /U(UclzepG'(O) j exp [-cu(r-a) I + 0(I)

K (a G00) = exp (r-a 2G'(0) j L

=aG'(0) 1
exp (r-a)G(0) exp [ .ou(r-a)] + 0(-)

Substituting (3.7) into (3.3), we get:
1 (r-a)aG'(0)l ' a e u{t-a(r-a)}

(3.8) w(r, t) = - 2(0) du

Y- i= u

rexp 2G(O) G( H( t-c(r-a))

1 J Ut 0(-L) du

27 -2
Y_iO U

The last term in (3. 8) is continuous r > a and t > 0 because the inte-

gral is uniformly convergent for any fixed r,t. Comparing (3.8) with

(3.2) while using the continuity of the second term in (3.8) we get
(3e9) g + - (r-a) a G'(0) 515

"', r- I 2G(0)
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The decay with r of cylindrical vortex sheets is more rapid than plane

sheets which damp according to (1.5) without the factor r
- I/ 2 .

We next consider the problem of reflections off the walls of con-

centric cylinders which bound i fluid occupying the region

V = {a < r < b, 0 < 8 < 2ff, - < z < }

The spin up problem may be stated as follows

=w a2  l 3w w(r'tss
p = G(s) a 2 w (r, t-s) + 1- -(r,t-s) t-s) ds,r rr2

aQ =1 for t > 0
w(a, t) = 0 for t< 0

(3.10)

w(b, t) = 0 t

w(r, 0) = 0 r [a, b]

w(r, t) is bounded as r, t .

We now utilize the method of Laplace transforms, following argu-

ments given in §6 of 16] and find that

Y+iOO

(3.11) w(r, t) = u- e w(r, u) du
2ri j

where

I ll(bn(u))K (rn (u)) - K (bn(lu))I (rr(u))
(3.12) w(r, uu Kl(an (u))1l(bn(u)) - Kl(bn (u))Il(an (u))

n(u) = PU

An asymptotic form for (3.11) follows from combining the asymptotic ex-

pressions for Iz -b c

ez 1I(z) =_ + 0(11

(3.13)

K1  z) T 516

with (3. 12) . Thus51



w (r, U) / e(b-r) n(u) e-(b-r) r(u) 1

e(b-a) n(u) -(b-a) ri(u) u

Hence
Y+i=

e u t e(b-r)n (u) - (b-r) n(u)
(3.14) w(r, t) e (b-a)r(u) -(b-a) (u) du

Y_iOO e -e

y+ico

+e 01 !) du
1 u

Y- io

We next note that the first term in (3.14) is the same as in (8.3)-

(8.7) of §8 of [6] if we set r-a = x, and b-a = Y. The second term in

(3.14), being uniformly convergent for any r and t, in a continuous func-

tion of r and t. Thus

w(r, t) = a [f(x, t) H(t-ax) + {f(x+21, t)

(3.15) H(t-a(x+21)) - f(21-x, t) H(t-a(21-x))}

+.......] + h(x, t)

The function f in (3.15) is the same f appearing in (1.5) while

h(x,t) is continuous for x = r-a [0,91 and t>O. It follows from (3.15)

that discontinuities are reflected along the characteristic lines shown

in Fig. 3.1.

0 .

Fig. 3.1. Characteristic lines for reflection from the

walls of concentric cylinders, x = r-a, t = b-a,1.71iders|



The asymptotic steady state in case of 
flow governed by (1.20) is

given by:

lim lim u -ru
trn w(r,t) = u w(ru)

Using (1.22) and

2
I(z) ~

as z +0 and Re z > 0

K1 (Z) . )
we get

b r
lii r b

(3.16) t m w(r,t) b _ b

a b r2

r bf 2
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§4 Solutions of start up problems with arbitrary boundary data by inte-

grals of Duhamel's type

A shearing motion is initiated at x=0 by data of the form

g(t) , t > 0V(0,t) = 0 ,t< 0

where g(t) is an arbitrary function (possessing a Laplace transform).

The velocity V(x,t) then satisfies

(4.1 )2v v(x,t)(4.1) G (s) aL ( x, t-s) ds = P0t xt

f ax at

v(0,t) = gt) , where g(t) - 0 t < 0

v(x,O) = 0 x > 0

v(x,t) is bounded

We shall solve (4.1) by superposition using the solution of the

following singular problem:

t 2 auuG (s) -(x,t-s) ds = -L (x,t)

0

U(0,t) = 6(t-i , T (0,t)

u(x,0) = 0 x > 0

u(x,t) is bounded for x, t- .

It is easy to see and not hard to prove that the solution of (4.2)

is the time-derivation of the solution of (3.1) where

1 for t> T
v(0,t) =

0 for t < T

It then follows that the solution of (4.2) is

(4.3) u(xt) = (x, t-T) H(t-T-ax)at

+ f(x, ax + ) (t-r-ax)

Of course (4.3) can be obtained dire5ctly as the inverse of the Laplace

'. I



transform of (4.2). (The details of the type of calculation are given in

§10 of [6]). We note that t in the upper limit of integration in the

integral on the left of (4.2), may be replaced with t+6, 6>0 because

u(x,-6) = 0 for 6>0. The interpretation of the 6 function which this

implies may be expressed as follows: for any h(s) such that h(s) = 0,

s<0 we have

Jh(s) 6(s)ds =J h(s) 6(s)ds = h(0)

_00 0

We now assert that the solution of problem (4.1) in a linear super-

position (integration) of the function g(T) u(x,t). This is true because

00 t

(4.4) v(0,t) = g(t) f g(t-n) 6(n)dn = g(t-n) 6(nl)dn

0 0
t

= g(T) 6(t-T)dT

0

Using (4.3) and (4.4), we find that the solution of (4.1) is

t

(4.5) v(x,t) = Jg(T) u(x,t)dt

0

t

= g(T) (x, t-T) H(t-T-cax) + f(x, ax) 6 (t-T-ax) dT

0

It follows from (2.5) that if

(4.6) t-ax<0 then v(x,t) = 0

This implies that the information of rest prior to start-up is always

preserved. On the other hand, when t-ax> 0, (4.5) gives

t-ax t-ax

(4.7) vI(x t)a= t g(T) (x,t-T) dt + f(x, ax + ) g(t-ax-n)6((n)dn

0 0

t-ax

= g(T) - (x,t-r) dr + f(x, ax + ) g(t-ax)
0

t-x
I g(T) 2f (x,t-T)dT + exp(aG(0)) g(t-x)

0 520
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It is easy to verify that (4.7) reduces to (1.5) for g(T) = H(T) and
(1.6) for g(T) = 6(T). Eqs. (4.6) and (4.7) together constitute the

solution of the problem posed in (4.1). Thus we conclude that discon-

tinuities in the boundary values of g or its derivatives propagate into

the interior with speed C=I/a. Hence (4.7) also proves that any dis-

continuity in a start-up problem of linear viscoelasticity can come only

through the boundary data. It is also clear from (4.7), that this pro-

pagating discontinuity is exponentially damped.

We turn next to the construction of the solution of start-up prob-

lems between parallel plates. The problem to be solved may be expressed

as:

t ~2

(4.8) G(s) 2 v (x, t-s) ds p 0f ax2  a
0

v(0,t) = g(t) ; when g(t) 0 t< 0

v(X,t) = 0

v(x,O) = 0

v(x,t) is bounded as t .

Proceeding as in the previous problem we first consider the case

in which g(t) = 6(t-T). The v(x,t) for this singular problem is given

by

v(x,t) = [(x,t-t) + {*(x+21, t-T) -P(21-x,t-T))

+.........]

where

f+(4.9) O(xt) 2 (x,t) H(t-ctx) + f(x,x + ) S(t-ax)

The function f(x, t) in (4.9) is defined by (1.5). We now use the

principle of superposition to compose the solution of (4.8) in Duhamel

form

t
0~r) (Xt) dT

(4.10) f (T 521
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= g(T) [f(x,t-T) + {f(x+21, t-T)- -.-(21-xt-T

0

+ ....... ] H(t-T-Ix)

+ [f(x,cx + ) g(t-x) + {f(21+x, ct(21+x) + ) g(t-ax)

- f(21-x, a(21-x)) g(t-x)} +. ....... ] dT

The dots in (4.10) represent similar terms arising out of repeated re-

flection between the walls at x=0 and x=L of the original characteristic

t-ax = const. It also follows from (4.10) that v(x,t)=0 when t-cx < 0

and, when t-ax> 0 we find that:

t-ax
(4.11) v(x,t) = g(t) [(xt-) + Lf(x+21,t-T) - L(21-x,t-T)

0

I1 +
+....I dT + flx,ax lglt-ax) + {f(21+x, a(21+x)

g(t-ax) - f(21-x,a(21-x) g(t-x)} +

We may use (4.11) to study the interactions of multiple shocks gen-

erated by multiple discontinuities in the boundary data g(t). For exam-

ple, consider

0 for t< 0

(4.12) g(t) = 1 for 0<t<1

0 for t> 1

It follows from (4.11) that the discontinuities of g(t) propagate along

the characteristic lines t-ax=O and t-ax=l and their repeated reflec-

tions, as in Fig. 4.1 +

* t- *2t-x)n- t-a(2 -x)-0

t-Ol -- t-a=-0

0 X

Fig. 4.1. Propagation of the singular data given by (4.12) 522

a-b. - - -. . ....



-- - -WIM-oWf"O "-

Similar solutions can be obtained for spin-up problems between cylinders.
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§5. Linear viscoelastic solids

In [7] we used Laplace transforms to study problems of singular

boundary data in viscoelastic solids. If G(O) > 0 and G'(0) < 0 are fin-

ite, steps in displacement initiated at the boundary will propagate into

the interior of the solid. We interpreted this to mean that the material

fails in shear. Stress relaxation experiments in solids are in some

sense modeled by steps in displacement. As in fluids, it is necessary

to understand the underlying dynamics of such problems. To pursue such

an understanding we study the following initial-boundary value problem

with smooth, but otherwise arbitrary boundary data g(t), t> 0:

a2 2v + dG a(s) x2
=- (j+U(O)) a d s) (x,t-s ds,

(5.1) v(0,t) = g(t) ; g(t) = 0 t< 0,

v(x,0) = 2 (xO) = 0,

v(x,t) is bounded as x, t + .

We can solve (5.1) using the methods which led to the Duhamel type of

integrals displayed in equations (4.1-4.7). Thus

t

(5.2) v(x,t) = g(T) (x,t-T)dT + f(x, ax +) g(t-ix)

0

where

and f(x,t) = f(x,t) where f(x,t) is defined by equation (3.10,11) of

[7] and f(x,t) has the properties specified in §lof this paper.

The implications of this type of solution for the rheometry of

viscoelastic solids should resemble those discussed in §2 for fluids.

We defer a detailed comparison of theory and experiment in solids to a

later paper. For now it will suffice to note that in theory of solids

the notion of homogeneous strain and stress is frequently used, espec-

ially in the study of the creep of viscoelastic solids. Such homogen-

eous strains and stresses are undoubtedly incompatible with exact ana-

lysis of the underlying dynamics. Following the usual path, assuming

a homogeneous state of stress, we prove the following intuitive result:

If the homogeneous stress in a linear viscoelastic solid relaxes mono-

.1-.-.



tonically in step-strain tests, then the longitudinal strain in the same
solid increases monotonically in creep tests (see Fig. 5.1). To prove
this we note that the stress T in a linear viscoelastic solid undergoing
uni-axial strain (xt) 1-u (x,t) is given by T (j + G(O)) £(t) +.wdG

f ! e(t-s) ds . A montonically decreasing stress relaxation for a homo-
geneous step-strain implies that G satisfies assumptions (i)-(ii) listed
under (1.1). We have assumed either that G'(0) 3 0 or G"(0) X 0. The
strain c defining creep is governed by

t
(5.3) T = (V + G(0)) E(t) + s (S) E(t-s)ds

0
1 for t> 0

=0 for t < 0

By taking various limits of (5.3) and its derivative we can show that
•1

E(0) =i+G(0)

CIO + )  -G'(0) >0, if G'(0) y' 0{ii+G(0) }

E"(0 + ) = -G"(0)/{U+G(0) 2 if G'(0) = 0 and G"(0) # 0

lim Ct) C

It is easy to verify, using (5.3) that e(t) iscontinuous and e'(t) exists
for any t> 0. We want to prove that

(5.5) I(t) > 0 t > 0

If (5.5) is not true, then (using (5.4)) there exists a t> 0 sach that

(5.6) c'(E) = 0 and E'(t) >0 te[0,t]

By differentiating (5.3) once with respect to t, we find that

t
(5.7) ( + G(0)) '(t) + G'(t) £(0) + f G'(s) I(t-s) ds

0

=0 t > 0

After evaluating (5.7) at t t, using (5.6),we get:
525
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tf

(5.8) G' (t) E (0) + j G'(S) E' (t-s) ds = 0

0

But (5.8) then leads to a contradiction because the assumptions about

G(s) make the left side of (5.8) strictly negative. It follows that

£' (t) > 0 and not < 0. It is not hard to demonstrate that E'(t) > 0 when

(5.9) G(s) = a 6(s) + h(s)

wherea > 0, h(s) satisfies the assumptions under (1.1) and 6(s) is a

Dirac measure at the origin.

Graphical represntations of the monotonicity result are exhibited

in Fig. 5.1 below:

T

i. + G(0) G 0)<0

S

(a)s: Homogeneous step-strain relaxation

1

S(0)(0)

t

(b) Creep response to a homogeneous step in stress

Fig. 5.1: Relation between stress relaxation and creep.

When a >0 in (5.9), the response to a step increase in stress is mono-

tonic as in Fig. 5.1 (b), but it passes through the origin as in Fig.

5.2. 526
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Ztan 0,- a:

Fig. 5.2: Creep response for kernels of the type (5.9)

We close by reminding the reader that the type of response which

we have described above depends tacitly on the unfounded and actually

incorrect assumption that homogeneous step-strain (relaxation) and step-

stress (creep) tests are admissible deformations compatible with dyna-

mics.
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CORRI GEN DUM

Linearized Dynamics for Step Jumps of Velocity and Displacement of Shear-

ing Flows of A Simple Fluid, by A. :rarain and D. D. Joseph (Rheol. Acta

21, 228-250 (1962)).

1) The quantities G(s), C t(t) and AI(t) are tensors and should be in

boldface.

2) The equations under (3.4) should read

t(x,s) = 0 for t < 0

and

dx~s = -v g(x,t-s).
ds(x's) =- U

3) The first sentence under Fig. 5.1 should read "Now for t-ax<0

4) Eqn (6.8) should be replaced by:

Mvn - Mv f tG(t-s)f xx(X,s)ds - 2aG(t-ax)f x(x,'X
+ )

ax

+a 2G'(t-ax)f(x,cx + ) - a2 G(t-ax) L(x,ax+ )

- p1(x,t).

5) Eqn. (6.11) should be replaced by:

fi ax + ) + 2 2f. +. = G'(0) f(x,ax+
t x a - x,ax G(O)

6) The left side of (14.11) should be replaced by

W(r,t)
aR

7) Eqn. (14.12) (ii) is:

1(Z) " A exp (-z) as Izl-.

8) Eqn. (16.5) can be ignored.

9) The sentence under Eqn. (4.5) should read "Eqs. (4.3, 4.5) imply

S...... half-plane Re u>-A."

10) The equations between (14.3) and (14.6) should be numbered (14.4)

$and (14.5).

11) The left side of the equation above (14.6) should read G<r>(t) in

place of G<w>(t).

12) The left side of Eqn (6.7) should read:

a2
n528
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13) The definition of (u) underneath (.10.4) is

n(u) )
G u)

14) The eqn. (5.17) should read
-1

+GI( +. + 0()1 2[ + G(0)u G(0)u

Gu u ju
2u 8 2 2 0(

U U U

where _, def
- G'(0)

-0G(0)

def 1 G"(0)

- 2 G(O)
15) The right side of (12.5) should read:

v(x,t) = U[g(x,t) + {g(x+21, t) - g(2.-x,t}

+ {..1 +........
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